精英家教网 > 高中数学 > 题目详情

【题目】已知函数为奇函数.

1)求a的值,并证明R上的增函数;

2)若关于t的不等式f(t22t)f(2t2k)0的解集非空,求实数k的取值范围.

【答案】(1),证明见解析(2)

【解析】

(1)由奇函数在0处有定义时计算可得.证明上为增函数时,,再计算,化简证明即可.
(2)先根据奇偶性化简为,因为函数单调递增,所以若解集非空,有解.再根据二次不等式恒成立的问题求解即可.

1)因为定义在R上的奇函数,所以,得.

此时,,

,所以是奇函数,

所以

任取R,且,则,因为

所以,

所以R上的增函数.

2)因为为奇函数,f(t22t)f(2t2k)0的解集非空,

所以的解集非空,

R上单调递增,

所以的解集非空,

R上有解,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是

A. 对分类变量XY,随机变量K2的观测值k越大,则判断“XY有关系的把握程度越小

B. 在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位

C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

D. 回归直线过样本点的中心(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某影院共有1000个座位,票价不分等次,根据该影院的经营经验,当每张票价不超过10元时,票可全部售出,当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院一个合适的票价,符合的基本条件是:

为了方便找零和算账,票价定为1元的整数倍;

影院放映一场电影的成本费为5750元,票房收入必须高于成本支出.

1)设定价为)元,净收入为元,求关于的表达式;

2)每张票价定为多少元时,放映一场的净收入最多?此时放映一场的净收入为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究某种图书每册的成本费(元)与印刷数(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中

(1)根据散点图判断: 哪一个更适宜作为每册成本费(元)与印刷数(千册)的回归方程类型?(只要求给出判断,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程(回归系数的结果精确到0.01);

(3)若每册书定价为10元,则至少应该印刷多少册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)

(附:对于一组数据 ,…, ,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).

(1)写出曲线的极坐标方程,并求交点的极坐标;

(2)射线与曲线分别交于点异于原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人耳的听力情况可以用电子测听器检测,正常人听力的等级为0-25(分贝),并规定测试值在区间为非常优秀,测试值在区间为优秀.某班50名同学都进行了听力测试,所得测试值制成频率分布直方图:

(Ⅰ)现从听力等级为的同学中任意抽取出4人,记听力非常优秀的同学人数为,求的分布列与数学期望;

(Ⅱ)在(Ⅰ)中抽出的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号 (其中 为1,2,3,4的一个排列).若为两次排序偏离程度的一种描述, ,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为左,右焦点,分别为左,右顶点,D为上顶点,原点到直线的距离为.设点在第一象限,纵坐标为t,且轴,连接交椭圆于点.

(1)求椭圆的方程;

(2)(文)若三角形的面积等于四边形的面积,求直线的方程;

(理)求过点的圆方程(结果用t表示)

查看答案和解析>>

同步练习册答案