【题目】已知函数为奇函数.
(1)求a的值,并证明是R上的增函数;
(2)若关于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求实数k的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+alnx.
(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;
(2)若a=1,求函数f(x)在[1,e]上的最值;
(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是
A. 对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小
B. 在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位
C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1
D. 回归直线过样本点的中心(, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某影院共有1000个座位,票价不分等次,根据该影院的经营经验,当每张票价不超过10元时,票可全部售出,当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院一个合适的票价,符合的基本条件是:
①为了方便找零和算账,票价定为1元的整数倍;
②影院放映一场电影的成本费为5750元,票房收入必须高于成本支出.
(1)设定价为()元,净收入为元,求关于的表达式;
(2)每张票价定为多少元时,放映一场的净收入最多?此时放映一场的净收入为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究某种图书每册的成本费(元)与印刷数(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根据散点图判断: 与哪一个更适宜作为每册成本费(元)与印刷数(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).
(1)写出曲线的极坐标方程,并求与交点的极坐标;
(2)射线与曲线与分别交于点(异于原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人耳的听力情况可以用电子测听器检测,正常人听力的等级为0-25(分贝),并规定测试值在区间为非常优秀,测试值在区间为优秀.某班50名同学都进行了听力测试,所得测试值制成频率分布直方图:
(Ⅰ)现从听力等级为的同学中任意抽取出4人,记听力非常优秀的同学人数为,求的分布列与数学期望;
(Ⅱ)在(Ⅰ)中抽出的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号, , , (其中, , , 为1,2,3,4的一个排列).若为两次排序偏离程度的一种描述, ,求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,分别为左,右焦点,分别为左,右顶点,D为上顶点,原点到直线的距离为.设点在第一象限,纵坐标为t,且轴,连接交椭圆于点.
(1)求椭圆的方程;
(2)(文)若三角形的面积等于四边形的面积,求直线的方程;
(理)求过点的圆方程(结果用t表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com