【题目】如图,已知,两个城镇相距20公里,设是中点,在的中垂线上有一高铁站,的距离为10公里.为方便居民出行,在线段上任取一点(点与,不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到,两处.因地质条件等各种因素,其中快速路造价为3百万元/公里,快速路造价为2百万元/公里,快速路造价为4百万元/公里, 设,总造价为(单位:百万元).
(1)求关于的函数关系式,并指出函数的定义域;
(2)求总造价的最小值,并求出此时的值.
科目:高中数学 来源: 题型:
【题目】设集合A={1,2,…,2016}.对于A的任一个1008元子集X,若存在x、y∈X,满足x<y,x|y,则称X为“好集”.求最大的正整数a(a∈A),使得任一个含a的1008元子集皆为好集。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=a-bcos(b>0)的最大值为,最小值为-.
(1)求a,b的值;
(2)求函数g(x)=-4asin的最小值并求出对应x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
房屋面积() | 115 | 110 | 80 | 135 | 105 |
销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.经过任意三点有且只有一个平面.
B.过点有且仅有一条直线与异面直线垂直.
C.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行.
D.面与平面相交,则公共点个数为有限个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com