(本小题满分16分)
已知函数,
(1)若在上的最大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2+b2(a1,a2,b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数,其中
(Ⅰ)求在上的单调区间;
(Ⅱ)求在(为自然对数的底数)上的最大值;
(III)对任意给定的正实数,曲线上是否存在两点、,使得是以原点为直角顶点的直角三角形,且此三角形斜边中点在轴上?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数的图象过点(1,13),图像关于直线对称。
(1)求的解析式。
(2)已知,,
① 若函数的零点有三个,求实数的取值范围;
②求函数在[,2]上的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数为常数,且)满足条件:,且方程有两个相等的实数根.
(1)求的解析式;
(2)求函数在区间上的最大值和最小值;
(3)是否存在实数使的定义域和值域分别为和,如果存在,求出的值,如不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(I)写出年利润(万元)关于年产量(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com