. (满分12分)定义在上的函数满足,且,当时,。1)求在上的解析式;
2)若在上是减函数,求函数在上的值域。
科目:高中数学 来源:2010-2011学年广东省高考猜押题卷文科数学(三)解析版 题型:解答题
(本题满分12分)
如图6,在平面直角坐标系中,设点,直线:,点在直线上移动,
是线段与轴的交点, .
(I)求动点的轨迹的方程;
(II)设圆过,且圆心在曲线上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山西省、长治二中高三第二次联考理科数学 题型:解答题
(本小题满分12分)
已知 F1、F2是椭圆的两焦点,是椭圆在第一象限弧上一点,且满足=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河北省高三第四次月考数学理卷 题型:解答题
(本小题满分12分)
已知直线过椭圆的右焦点,抛物线:的焦点为椭圆的上顶点,且直线交椭圆于、两点,点、、 在直线上的射影依次为点、、.
(1)求椭圆的方程;
(2)若直线l交y轴于点,且,当变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接、,试探索当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年山西省高三高考前适应性训练数学理卷 题型:解答题
(本小题满分12分)
已知直线与椭圆交于两点,椭圆上的点到下焦点距离的最大值、最小值分别为,向量,O为坐标原点。[来源:学#科#网]
(Ⅰ)求椭圆的方程;
(Ⅱ)判断的面积是否为定值,如果是,请给予证明;如果不是,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届山东省高一上学期12月月考数学 题型:解答题
(本题满分12分) 设是定义在上的增函数,令
(1)求证时定值;
(2)判断在上的单调性,并证明;
(3)若,求证。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com