精英家教网 > 高中数学 > 题目详情

已知双曲线C1:-=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为(  )

(A)x2=y (B)x2=y

(C)x2=8y (D)x2=16y

 

【答案】

D

【解析】e==24==1+,

=3.

∴双曲线的渐近线方程为y=±x,抛物线x2=2py的焦点是0,,

它到直线y=±x的距离d=2==,

p=8.

∴抛物线方程为x2=16y.

故选D.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知双曲线C1
y2
m
-
x2
n
=1(m>0,n>0),圆C2:(x-2)2+y2=2,双曲线C1的两条渐近线与圆C2相切,且双曲线C1的一个顶点A与圆心C2关于直线y=x对称,设斜率为k的直线l过点C2
(1)求双曲线C1的方程;
(2)当k=1时,在双曲线C1的上支上求一点P,使其与直线l的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)已知双曲线C1
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,则双曲线C1的离心率为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广西模拟)已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1、F2,抛物线C2y2=2px(p>0)与双曲线C1共焦点,C1与C2在第一象限相交于点P,且|F1F2|=|PF1|,则双曲线的离心率为
2+
3
2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-
y2
b2
=1(a>b>0)
的离心率为2.若抛物线C2x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为
x2=16y
x2=16y

查看答案和解析>>

同步练习册答案