精英家教网 > 高中数学 > 题目详情
(2013•长宁区一模)已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y)
,满足
m
n
=0

(Ⅰ)将y表示为x的函数f(x),并求f(x)的最小正周期:
(Ⅱ)已知a,b,c分别为△ABC的三个内角A,B,C的对应边长,若f(
A
2
)=3
,且a=2,求b+c的取值范围.
分析:(Ⅰ)利用向量的数量积公式,结合二倍角、辅助角公式化简函数,从而可求函数的最小正周期;
(Ⅱ)由f(
A
2
)=3
,求得A=
π
3
.由a=2,利用正弦定理可得b=
4
3
3
sinB
,c=
4
3
3
sinC
,从而b+c=
4
3
3
sinB
+
4
3
3
sinC
,化简,即可求b+c的取值范围.
解答:解:(Ⅰ)∵
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y)
,满足
m
n
=0

∴2cos2x+2
3
sinxcosx-y=0
∴y=2cos2x+2
3
sinxcosx=cos2x+
3
sin2x+1
∴f(x)=2sin(2x+
π
6
)+1,f(x)的最小正周期T=
2
=π;
(Ⅱ)∵f(
A
2
)=3
,∴sin(A+
π
6
)=1
∵A∈(0,π),∴A=
π
3

∵a=2,∴由正弦定理可得b=
4
3
3
sinB
,c=
4
3
3
sinC

∴b+c=
4
3
3
sinB
+
4
3
3
sinC
=
4
3
3
sinB
+
4
3
3
sin(
3
-B)
=4sin(B+
π
6

∵B∈(0,
3
)
,∴B+
π
6
(
π
6
6
)
,∴sin(B+
π
6
)∈(
1
2
,1],
∴b+c∈(2,4]
∴b+c的取值范围为(2,4].
点评:本题考查向量知识的运用,考查三角函数的化简,考查正弦定理,确定函数解析式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•长宁区一模)某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-2)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)(2-
x
8 展开式中含x4项的系数为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)已知函数f(x)=
1+x
+
1-x

(1)求函数f(x)的定义域和值域;
(2)设F(x)=
a
x
•[f2(x)-2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若-m2+2tm+
2
≤g(a)对a<0所有的实数a及t∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)“φ=
π
2
”是“函数y=sin(x+φ)为偶函数的”(  )

查看答案和解析>>

同步练习册答案