精英家教网 > 高中数学 > 题目详情
5.已知a+b+c=0,求证:a3+a2c+b2c-abc+b3=0.

分析 先用“立方和”公式a3+b3=(a+b)•(a2-ab+b2),将原式化为(a+b+c)•(a2-ab+b2),再根据题中条件得出结论.

解答 证明:运用“立方和”公式证明
a3+b3=(a+b)•(a2-ab+b2),
∴原式=a3+b3+(a2c+b2c-abc)
=(a+b)•(a2-ab+b2)+c(a2-ab+b2
=(a+b+c)•(a2-ab+b2
∵a+b+c=0,
∴原式=0,
即当a+b+c=0时,a3+a2c+b2c-abc+b3=0.

点评 本题主要考查了运用综合法证明等式问题,涉及到立方和公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知点A(3,4,4),B(-2,-1,5),C(4,5,0),若点D在线段AC上,且△ABD的面积是△ABC的面积的$\frac{1}{3}$,求线段BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{3}$x3-alnx+a,a∈R,g(x)=$\frac{1}{3}$x3-bx2+c在点(3,g(3))处的切线方程为y=-3x.
(1)求函数f(x)的单调区间;
(2)f(x)-g(x)≥0在[1,十∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义集合A与B的运算A*B为A*B={(x,y)|x∈A,y∈B},若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{1}{2}$sin$\frac{1}{2}$x的最小正周期是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,BD:DC=2:1,AE:EC=1:3,求OB:OE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)和g(x)的图象在[a,b]上是连续不断的,且f(a)<g(a),f(b)>g(b),试证明:在(a,b)内至少存在一点x0,使f(x0)=g(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在棱长为1的正方体ABCD-A1B1C1D1中,A1C与平面ABCD所成的角为(  )
A.$\frac{π}{6}$B.arctan$\frac{\sqrt{3}}{3}$C.$\frac{π}{3}$D.arctan$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,若AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,则A到平面PBC的距离是$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

同步练习册答案