精英家教网 > 高中数学 > 题目详情
对于|q|<1(q为公比)的无穷等比数列{an}(即项数是无穷项),我们定义
lim
n→∞
Sn(其中Sn是数列{an}的前n项的和)为它的各项的和,记为S,即S=
lim
n→∞
Sn=
a1
1-q
,则循环小数0.
7
2
的分数形式是
 
考点:数列的极限
专题:计算题,等差数列与等比数列
分析:利用S=
lim
n→∞
Sn=
a1
1-q
,即可求出循环小数0.
7
2
的分数形式.
解答: 解:0.
7
2
=
72
100
+
72
1002
+…+=
72
100
1-
1
100
=
8
11

故答案为:
8
11
点评:本题考查数列的极限,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③根据散点图求得的回归直线方程可能是没有意义的;
④若某项测量结果ξ服从正态分布N(1,σ2),且P(ξ≤4)=0.9,则P(ξ≤-2)=0.1.
其中真命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法流程图,则输出的x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AO=2,B是半个单位圆上的动点,△ABC是等边三角形,求当∠AOB等于多少时,四边形OACB的面积最大,并求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx+cosx+sinx•cosx的值域为(  )
A、[-1,1]
B、[-1,
2
+
1
2
]
C、[-1,
2
-
1
2
]
D、[-1,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a3=1,Sn是其前n项和,且Sn=an+1(n∈N*).
(Ⅰ)求an,Sn
(Ⅱ)设bn=log2Sn,数列{cn}满足cn•bn+3•bn+4=1+n(n+1)(n+2)•2bn,数列{cn}的前n项和为Tn,当n>1时,求使
2
n-1
Tn<2n+
n+1
5
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(x2-2x+a)的值域不可能是(  )
A、(-∞,0]B、[0,+∞)
C、[1,+∞)D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c为集合A={1,2,3,4,5}中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a,则输出的数a=5的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=
2x-1
x+1
,对于n∈N*,定义fn+1(x)=f1(fn(x)),求fn(x)的解析式.

查看答案和解析>>

同步练习册答案