精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱的各棱长均为2, EF分别为棱的中点.

(1)求证:直线BE∥平面

(2)平面与直线AB交于点M,指出点M的位置,说明理由,并求三棱锥的体积.

【答案】(1)见解析;(2) .

【解析】试题分析:(1)取A1C1的中点G,由平几知识确定四边形BFGE是平行四边形.即得BEFG再根据线面平行判定定理得结论,(2)由线面平行性质定理得ACFM,即得M为棱AB的中点.根据等体积法得,再根据锥体体积公式求体积.

试题解析:(1)取A1C1的中点G,连接EG,FG

于是EG,又BF

所以BFEG.

所以四边形BFGE是平行四边形.

所以BEFG

所以直线BE∥平面

(2)M为棱AB的中点.

理由如下:

因为AC

所以直线AC∥平面,又

所以ACFM.又F为棱的中点.

所以M为棱AB的中点.

三角形BFM的面积

所以三棱锥的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:

(1)画出散点图;

(2)求回归直线方程;

(3)据此估计广告费用为9万元时,销售收入y的值.

注:①参考公式:线性回归方程系数公式

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:

其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )

①寿命在300-400的频数是90;

②寿命在400-500的矩形的面积是0.2;

③用频率分布直方图估计电子元件的平均寿命为:

④寿命超过的频率为0.3

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长均相等的四棱锥, 为底面正方形的中心, ,分别为侧棱,的中点,有下列结论正确的有:( )

A.∥平面B.平面∥平面

C.直线与直线所成角的大小为D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.如图所示的折线图是2016年1月至2017年12月的中国仓储指数走势情况.

根据该折线图,下列结论正确的是

A. 2016年各月的仓储指数最大值是在3月份

B. 2017年1月至12月的仓储指数的中位数为54%

C. 2017年1月至4月的仓储指数比2016年同期波动性更大

D. 2017年11月的仓储指数较上月有所回落,显示出仓储业务活动仍然较为活跃,经济运行稳中向好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,求:

(1);(2) 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,图①是棱长为1的小正方体,图②,③是由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别将第1层,第2层,…,第层的小正方体的个数记为,解答下列问题:

(1)按照要求填表:

1

2

3

4

1

3

6

_

(2)__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又有零点的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ACBC,AC=BC=1,点P是△ABC内一点,则的取值范围是(  )

A. (﹣,0) B. (0, C. (﹣ D. (﹣1,1)

查看答案和解析>>

同步练习册答案