精英家教网 > 高中数学 > 题目详情
16.若等差数列{an}的前15项和为5π,则cos(a4+a12)=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

分析 由${S}_{15}=\frac{15}{2}({a}_{1}+{a}_{15})=\frac{15}{2}({a}_{4}+{a}_{12})$=5π,求出${a}_{4}+{a}_{12}=\frac{2}{3}π$,由此能求出cos(a4+a12)的值.

解答 解:∵等差数列{an}的前15项和为5π,
∴${S}_{15}=\frac{15}{2}({a}_{1}+{a}_{15})=\frac{15}{2}({a}_{4}+{a}_{12})$=5π,
∴${a}_{4}+{a}_{12}=\frac{2}{3}π$,
∴cos(a4+a12)=cos$\frac{2π}{3}$=cos($π-\frac{π}{3}$)=-cos$\frac{π}{3}$=-$\frac{1}{2}$.
故选:A.

点评 本题考查余弦函数值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知P为函数y=ln(2x-1)图象上的一个动点,Q为函数y=2x+3图象上一个动点,则|PQ|2最小值=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:(a+c)(sinA-sinC)=sinB(a-b)
(I)求角C的大小;
(II)若c=2,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知点P在圆柱OO1的底面圆O上,AB为圆O的直径,圆柱的侧面积为16π
,OA=2,∠AOP=120°.试求三棱锥A1-APB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(1)证明:CD⊥平面PAE;
(2)若直线PB与平面PAE所成的角和直线PB与平面ABCD所成的角相等,求二面角P-CD-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanθ=2,则sin(2θ+$\frac{π}{4}}$)的值是(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动点P(x,y)满足方程xy=1(x>0).
(Ⅰ)求动点P到直线l:x+2y-$\sqrt{2}$=0距离的最小值;
(Ⅱ)设定点A(a,a),若点P,A之间的最短距离为2$\sqrt{2}$,求满足条件的实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某次知识竞赛中,从6道备选题中一次性随机抽取3道,并独立完成所抽取的3道题.某选手能正确完成其中4道题,规定至少正确答对其中2道题目便可过关.
(1)求该选手能过关的概率;
(2)记所抽取的3道题中,该选手答对的题目数为X,写出X的概率分布列,并求E(X).

查看答案和解析>>

同步练习册答案