精英家教网 > 高中数学 > 题目详情
已知等比数列{an}满足4a1+a3=4a2,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an-log2an,Sn=b1+b2+…+bn,求Sn
分析:(1)利用等差数列和等比数列的通项公式即可;
(2)由(1)可得bn=2n-n,再利用等差数列和等比数列的前n项和公式即可得出.
解答:解:(1)设等比数列{an}的公比为q,∵a3+2是a2,a4的等差中项,∴2(a3+2)=a2+a4
又4a1+a3=4a2,联立
4a1+a1q2=4a1q
2(a1q2+2)=a1q+a1q3

又a1≠0,∴
a1=2
q=2

an=a 1qn-1=2n
(2)由(1),得bn=an-log2an=2n-log22n=2n-n
Sn=b1+b2+…+bn=(21-1)+(22-2)+…+(2n-n)
=
2×(1-2n)
1-2
-
(1+n)
2
×n=2n+1-2-
1
2
n2-
1
2
n
点评:本题考查了等差数列和等比数列的通项公式、前n项和公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案