精英家教网 > 高中数学 > 题目详情
12.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(\;a>b>0\;)$的两个焦点F1,F2在x轴上,P为此椭圆上一点,且满足$∠P{F_1}{F_2}=\frac{π}{6},∠PO{F_2}=\frac{π}{3}$,则此椭圆的离心率是(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.2$\sqrt{2}$-2D.$\frac{\sqrt{3}}{2}$

分析 利用直角三角形的边角关系、椭圆的定义及其性质即可得出.

解答 解:∵$∠P{F_1}{F_2}=\frac{π}{6},∠PO{F_2}=\frac{π}{3}$,∴∠F1PF2=$\frac{π}{2}$.
可得:|PF2|=$\frac{1}{2}$|F1F2|=c,|PF1|=$\sqrt{3}$c,
∴|PF2|+|PF1|=c+$\sqrt{3}$c=2a,
∴$\frac{c}{a}$=$\frac{2}{\sqrt{3}+1}$=$\sqrt{3}$-1,
故选:B.

点评 本题考查了椭圆的定义及其性质、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=alnx+bx2+1在与x轴交点处的切线方程为y=x-1,则ab=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{3}=1$($a>\sqrt{3}$)上一动点 P到其两焦点F1,F2的距离之和为4,则实数a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定点A(2,0),圆x2+y2=1上有一个动点Q,若AQ的中点为P.
(1)求动点P的轨迹方程;
(2)设P的轨迹为曲线C,过点$B(\frac{1}{2},\frac{1}{2})$作曲线C的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.正方体ABCD-A′B′C′D′棱长为1
(1)证明:面A′BD∥面B′CD′
(2)求点B′到面A′BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an)中,al=1,公比|q|≠1,若am=a2a5a10,则m=(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2cosx,1),向量$\overrightarrow{b}$=(cosx,$\sqrt{3}$sin 2x),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,x∈R.
(I)求函数f(x)的最小正周期;
(Ⅱ)当x∈[$-\frac{π}{6}$,$\frac{π}{3}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=asin2x+bcos2x(a,b∈R,且ab≠0)的图象关于x=$\frac{π}{6}$对称,则函数y=f(x)的图象的一个对称中心是(  )
A.($\frac{π}{12}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{3}$,0)D.($\frac{5π}{12}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输出S的值是$\frac{1}{2}$,则a的值可以为(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

同步练习册答案