精英家教网 > 高中数学 > 题目详情

数学公式,,且数学公式(k>0),
(1)用k表示数量积数学公式
(2)求数学公式的最小值,并求出此时数学公式数学公式的夹角.

解:(1)由已知||=||=1,
=

=
(2)∵k>0,
=
∴cosθ==
∴θ=60°.
分析:(1)由已知可得||=||=1,把另一条件平方整理即可,
(2)利用均值不等式a+b≥2求最值,再cosθ=即可求夹角
点评:如果已知向量的坐标,求向量的夹角,我们可以分别求出两个向量的坐标,进一步求出两个向量的模及他们的数量积,然后代入公式cosθ=即可求解
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若向量
OA
+K
OB
+(2-K)
OC
=
0
(k为常数且0<k<2,O为坐标原点,S△BOC表示△BOC的面积)
(1)求cos(β-γ)的最值及相应的k的值;
(2)求cos(β-γ)取得最大值时,S△BOC:S△AOC:S△AOB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
(a,b∈R).
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(2)中的条件的整数对(a,b),奇函数h(x)的定义域和值域都是区间[-k,k],且x∈[-k,0]时,h(x)=f(x),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:已知函数f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)-
1
2
,(其中ω>0)
,且函数y=f(x)的图象相邻两条对称轴之间的距离为
π
2

(Ⅰ)求f(
π
6
)
的值;
(Ⅱ)若函数f(kx+
π
12
)(k>0)
在区间[-
π
6
π
3
]
上单调递增,求实数k的取值范围;
(III)是否存在实数m使方程3f2(x)-f(x)+m=0在(
π
12
π
3
]
内仅有一解,若存在,求出实数m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年新教材高考数学模拟题详解精编试卷(7)(解析版) 题型:解答题

,,且(k>0),
(1)用k表示数量积
(2)求的最小值,并求出此时的夹角.

查看答案和解析>>

同步练习册答案