精英家教网 > 高中数学 > 题目详情

(本题满分12分)

如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)证明:PQ⊥平面DCQ;

(2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

 

【答案】

(1)证明:见解析;(2) 1:1.

【解析】

试题分析:(Ⅰ)利用线面垂直的判定定理证明本题是解决本题的关键,要在平面中寻找与已知直线垂直的两条相交直线,进行线面关系的互相转化;

(Ⅱ)利用体积的计算方法将本题中的体积计算出来是解决本题的关键,掌握好锥体的体积计算公式.

解:                                 

(1)证明:由条件知PDAQ为直角梯形.

因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.

又四边形ABCD为正方形,DC⊥AD,

所以DC⊥平面PDAQ,可得PQ⊥DC.

在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD.

所以PQ⊥平面DCQ.

(2)解:设AB=a.

由题设知AQ为棱锥Q-ABCD的高,所以棱锥Q-ABCD的体积V1a3.

由(1)知PQ为棱锥P-DCQ的高,而PQ=a,△DCQ的面积为a2

所以棱锥P-DCQ的体积V2a3.

故棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值为1:1.

考点:本试题主要考查了空间中线面垂直的判定方法,考查学生的转化与化归能力,将线面垂直转化为线线垂直,注意步骤的规范性,考查学生对锥体的体积的计算方法的认识,考查学生的几何计算知识.

点评:解决该试题中一定要注意步骤的规范性以及对于线面垂直的性质定理的灵活运用。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案