精英家教网 > 高中数学 > 题目详情

已知f(x)是定义在R上的奇函数,且f(x+2)=f(x)恒成立,当x∈(-1,0]时,f(x)=2x则f(log26)的值为


  1. A.
    -数学公式
  2. B.
    -数学公式
  3. C.
    -数学公式
  4. D.
    -数学公式
A
分析:根据f(x)是定义在R上的奇函数,且f(x+2)=f(x)恒成立,可以推出f(-x)=-f(x),周期为2,根据log26∈(2,3),可以求出x∈(2,3]时,f(x)的解析式即可求解;
解答:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x)恒成立,当x∈(-1,0]时,f(x)=2x
函数f(-x)=-f(x),周期T=2,
令0<x<1,可得-1<-x<0,
∴f(-x)=-f(x)=2x
∴f(x)=-2x
∵f(x)的周期为2,log26∈(2,3),
∴f(log26)=f(log26-2)=-2log26-2=-=-
故选A;
点评:此题主要考查函数解析式的求法,奇函数的性质及其周期性,有一定的难度,是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案