精英家教网 > 高中数学 > 题目详情
4.已知sinα+cosα=$\frac{\sqrt{3}}{2}$,且α∈(0,π),则sin2α的值为(  )
A.-$\frac{\sqrt{15}}{4}$B.-$\frac{1}{4}$C.$\frac{\sqrt{15}}{4}$D.$\frac{1}{4}$

分析 由条件利用同角三角函数的基本关系,求得sin2α的值.

解答 解:∵已知sinα+cosα=$\frac{\sqrt{3}}{2}$,且α∈(0,π),平方可得1+sin2α=$\frac{3}{4}$,
∴sin2α=-$\frac{1}{4}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某工厂第三年的产量比第一年的产量增加20%,若每年的平均增长率相同(设为x),则以下结论正确的是(  )
A.x=10%B.x<10%
C.x>10%D.x的大小由第一年的产量决定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|(x+1)(x-2)<0},非空集合B={x|2a<x<6},则“A∩B=∅”的充分不必要条件可以是(  )
A.-1<a<2B.1≤a<3C.a>0D.1<a<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)上任一点(x0,f(x0))处的切线斜率$k=({{x_0}-2}){({{x_0}+1})^2}$,则该函数的单调递减区间为(  )
A.[-1,+∞)B.(-∞,2]C.(-∞,-1),(1,2)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)若AF=BE,求二面角的E-OC-F的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,平面四边形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,则△ADC的面积S为$\frac{3+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.集合A={-1,1},B={x|mx=1},A∪B=A,则实数m组成的集合(  )
A.{-1}B.{1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期及单调减区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若E,F,G分别为正三角形ABC的边AB,BC,CA的中点,以△EFG为底面,把△AEG,△BEF,△CFG折起使A,B,C重合为一点P,则下列关于线段PE与FG的论述不正确的为(  )
A.垂直B.长度相等C.异面D.夹角为60°

查看答案和解析>>

同步练习册答案