精英家教网 > 高中数学 > 题目详情
13.已知方程$\frac{x^2}{k-3}+\frac{y^2}{2-k}=1$表示焦点在y轴上的双曲线,则k的取值范围为k<2.

分析 利用双曲线的简单性质列出不等式求解即可.

解答 解:方程$\frac{x^2}{k-3}+\frac{y^2}{2-k}=1$表示焦点在y轴上的双曲线,
可得:2-k>0>k-3,
解得:k<2.
故答案为:k<2.

点评 本题考查双曲线的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=10,P为C的准线上一点,则△ABP的面积为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆C相切,求l1的方程;
(2)若l1的倾斜角为$\frac{π}{4}$,l1与圆C相交于P、Q两点,求线段PQ的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式$\frac{1}{x-1}$<1的解集记为p,关于x的不等式x2+(a-1)x-a>0的解集记为q,若p是q的充分不必要条件,则实数a的取值范围是(  )
A.(-2,-1]B.[-2,-1]C.(-∞,-2]∪[-1,+∞)D.(-∞,-2)∪(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,若AC=BD=2,且AC与BD成 60°,则四边形EFGH的面积为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{8}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知α是三角形的内角,且sinα+cosα=-$\frac{1}{5}$,则tanα的值为(  )
A.$-\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{3}{4}$D.$-\frac{3}{4}$或$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,游乐场中的摩天轮匀速逆时针旋转,每转一圈需要6min,其中心O距离地面40.5m,摩天轮的半径为40m,已知摩天轮上点P的起始位置在最低点处,在时刻t(min)时点P距离地面的高度为f(t)=Asin(ωt+φ)+h(A>0,ω>0,-π<φ<0,t≥0).
(Ⅰ)求f(t)的单调减区间;
(Ⅱ)求证:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在六面体ABCD-A1B1C1D1中,M,N分别是棱A1B1,B1C1的中点,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1
(1)证明:BB1⊥平面ABCD;
(2)已知六面体ABCD-A1B1C1D1的棱长均为$\sqrt{5}$,cos∠BAD=$\frac{3}{5}$,设平面BMN与平面AB1D1相交所成二面角的大小为θ求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,且$\overrightarrow{b}$⊥(2$\overrightarrow{a}$+$\overrightarrow{b}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案