【题目】如图,四棱锥的底面四边形ABCD为菱形,平面ABCD,,,E为BC的中点.
求证:平面PAD;
求二面角的平面角的余弦值.
【答案】(1)详见解析;(2)
【解析】
连结BD,证明推出然后证明平面PAD;以点D为原点,DA,DE,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系求出平面BAD的一个法向量,平面PBA一个法向量,利用空间向量的数量积求解平面PAD与平面PBC所成角的二面角的平面角的余弦值.
连结BD,由已知得与都是正三角形.
又因为点E为边BC的中点,所以
又因为,所以.
又平面ABCD,平面ABCD,所以
又因为,AD,平面PAD,所以平面
以点D为原点,DA,DE,DP所在直线分别为x轴,y轴,z轴建立空
间直角坐标系.
由知平面BAD的一个法向量为
,0,,0,所以,.
设平面PBA一个法向量为,
由,得,.
取,则,故.
设与的夹角为,则
所以平面PAD与平面PBC所成角的二面角的平面角的余弦值为
科目:高中数学 来源: 题型:
【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市有户籍的人口共万,其中老人(年龄岁及以上)人数约有万,为了了解老人们的健康状况,政府从老人中随机抽取人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以岁为界限分成两个群体进行统计,样本分布被制作成如下图表:
(1)若从样本中的不能自理的老人中采取分层抽样的方法再抽取人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市岁以上长者占全市户籍人口的百分比;
(3)政府计划为岁及以上长者或生活不能自理的老人每人购买元/年的医疗保险,为其余老人每人购买元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的平均值和方差.
附: ,其中.
0.05 | 0.01 | |
td style="width:124.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle"> | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数, ).
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若曲线上的动点到直线的最大距离为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(Ⅰ)求未来三年,至多有1年河流水位的概率(结果用分数表示);
(Ⅱ)该河流对沿河企业影响如下:当时,不会造成影响;当时,损失10000元;当时,损失60000元,为减少损失,现有三种应对方案:
方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采用措施:试比较哪种方案较好,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com