分析 (1)由已知BE⊥PC,从而AC⊥PB,AC⊥BC,由此能证明BE⊥平面PAC.
(2)以C为原点,CA为x轴,CB为y轴,过C作平面ABC的直线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面BEF所成的角的正弦值.
解答 证明:(1)∵PB=BC=CA=2,E为PC的中点,
∴BE⊥PC,
∵PB⊥底面ABC,∠BCA=90°,
∴AC⊥PB,AC⊥BC,
∵PB∩BC=B,∴AC⊥平面PBC,
∵BE?平面PBC,∴BE⊥AC,
∵AC∩PC=C,∴BE⊥平面PAC.
解:(2)以C为原点,CA为x轴,CB为y轴,过C作平面ABC的直线为z轴,建立空间直角坐标系,
A(2,0,0),B(0,2,0)P(0,2,2),C(0,0,0),
E(0,1,1),F(1,1,1),
$\overrightarrow{AB}$=(-2,2,0),$\overrightarrow{BE}$=(0,-1,1),$\overrightarrow{BF}$=(1,-1,1),
设平面BEF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=-y+z=0}\\{\overrightarrow{n}•\overrightarrow{BF}=x-y+z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
设直线AB与平面BEF所成的角为θ,
则sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{AB}|}{|\overrightarrow{n}|•|\overrightarrow{AB}|}$=$\frac{|2|}{\sqrt{2}•2\sqrt{2}}$=$\frac{1}{2}$,
∴直线AB与平面BEF所成的角的正弦值为$\frac{1}{2}$.
点评 本题考查线面垂直的证明,考查直线与平面所成角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com