精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a-
2x4x+1
(a∈R).
(1)判断函数f(x)的奇偶性;
(2)判断并证明函数f(x)在(0,+∞)上的单调性.
分析:(1)首先判断函数的定义域是否关于原点对称,其次判断f(-x)±f(x)=0是否成立即可;
(2)利用函数的单调性的定义即可判断证明.
解答:解:(1)∵函数f(x)=a-
2x
4x+1
(a∈R),定义域为实数集R.
①∵f(-x)-f(x)=a-
2-x
4-x+1
-
(a-
2x
4x+1
)
=-
2-x×4x
1+4x
+
2x
4x+1
=-
2x
4x+1
+
2x
4x+1
=0,∴f(-x)=f(x)对于任意实数x都成立,∴函数f(x)是偶函数;
②又f(-x)+f(x)=a-
2-x
4-x+1
+a-
2x
4x+1
=2a-
2x
1+4x
×2,此式对于任意的实数x不满足f(-x)+f(x)=0,故此函数不是奇函数.
(2)解:判断:函数f(x)在(0,+∞)上是单调递增函数.
证明:任取0<x1<x2
则f(x1)-f(x2)=a-
2x1
4x1+1
-
(a-
2x2
4x2+1
)
=
(2x1-2x2)(2x1+x2-1)
(4x1+1)(4x2+1)

由0<x1<x2,∴2x12x22x1+x2>1
2x1-2x2<02x1+x2-1>0
4x1+1>04x2+1>0
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2),
所以函数f(x)在(0,+∞)上是单调递增函数.
点评:熟练掌握函数的奇偶性的判断方法和证明函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案