【题目】数列满足, .
(1)证明:数列是等差数列;
(2)设,数列的前项和为,对任意的, , 恒成立,求正数的取值范围.
【答案】(1)证明见解析 (2)
【解析】试题分析:(1)根据等差数列的定义即可证明:数列是等差数列;
(2)利用错位相减法即可求数列{bn}的前n项和,利用作差法可得数列{}单调递增, , 恒成立,只需即可.
试题解析:
解(1)证明:由已知可得=,
即=+1,即-=1.
∴数列是公差为1的等差数列.
(2)由(1)知=+(n-1)×1=n+1,
∴an=.
所以bn=,
Tn=+++…+,
Tn=+++…+.
两式相减得
Tn=+2-,
Tn=+2×-,
Tn=1+4-=3-,
由Tn-Tn-1=3--=,
当n≥2时,Tn-Tn-1>0,所以数列{Tn}单调递增.
最小为,
依题意上恒成立,
设
则
又解得
科目:高中数学 来源: 题型:
【题目】定义在上的单调递减函数,对任意都有, .
(Ⅰ)判断函数的奇偶性,并证明之;
(Ⅱ)若对任意,不等式(为常实数)都成立,求的取值范围;(Ⅲ)设, , , , .
若 , ,比较的大小并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,求的值;
(2)若存在,使函数的图像在点和点处的切线互相垂直,求的取值范围;
(3)若函数在区间上有两个极值点,则是否存在实数,使对任意的恒成立?若存在,求出的取值范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, (、为常数).
(Ⅰ)求函数在点处的切线方程;
(Ⅱ)当函数在处取得极值,求函数的解析式;
(Ⅲ)当时,设,若函数在定义域上存在单调减区间,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为抛物线: ()的焦点,直线: 交抛物线于, 两点.
(Ⅰ)当, 时,求抛物线的方程;
(Ⅱ)过点, 作抛物线的切线, , 交点为,若直线与直线斜率之和为,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其东北方向与它相距32海里的处有一外国船只,且岛位于海监船正东海里处.
(1)求此时该外国船只与岛的距离;
(2)观测中发现,此外国船只正以每小时8海里的速度沿正南方向航行,为了将该船拦截在离岛24海里处,不让其进入岛24海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位需要从甲、乙人中选拔一人参加新岗位培训,特别组织了个专项的考试,成绩统计如下:
第一项 | 第二项 | 第三项 | 第四项 | 第五项 | |
甲的成绩 | |||||
乙的成绩 |
(1)根据有关统计知识,回答问题:若从甲、乙人中选出人参加新岗培训,你认为选谁合适,请说明理由;
(2)根据有关槪率知识,解答以下问题:
从甲、乙人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com