精英家教网 > 高中数学 > 题目详情
已知直线,平面满足,则的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
B
,由可得,则存在。因为,所以,从而可得。若,则可能平行可能相交。所以的充分不必要条件,故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知m、n表示直线,α、β、γ 表示平面,给出下列四个命题,其中真命题为    (    )
①α∩β=m,n≌αn⊥m则a⊥β ②a⊥β,a∩γ=m,β∩γ="n" 则n⊥m
③m⊥a,m⊥β,则α∥β   ④m⊥α,n⊥β,m⊥n,则α⊥β
A.①②B.③④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体的棱长为1,E为棱的中点,一直线过点与异面直线,分别相交与两点,则线段的长等于            (     )
A.3B.5 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在底面为直角梯形的四棱锥.

⑴求证:
⑵当时,求此四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在直三棱柱ABC-中,,D,E分别为BC,的中点,的中点,四边形是边长为6的正方形.
(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCD中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE=2
(I)求证:平面ECD⊥平面BCD
(II)求二面角D-EC-B的正切值
(III)求三棱锥A-ECD的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P—EFGH,下半部分是长方体ABCD—EFGH,图5、图6分别是该标识墩的正(主)视图和俯视图。
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
(3)证明:直线BD⊥平面PEG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)如图,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCD—A1B1C1D1中,直线与直线所成的角为_________;

查看答案和解析>>

同步练习册答案