【题目】今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁.私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.
【答案】(1)频率分布直方图详见解析;(2)分布列详见解析,.
【解析】试题(Ⅰ)由已知条件能求出图中各组的纵坐标,由此能完成被调查人员的频率分布直方图.
(Ⅱ)ξ的所有可能取值为:0,1,2,3,分别求出p(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望.
解:(Ⅰ)各组的频率分别是0.1,0.2,0.3,0.2,0.1,0.1.
所以图中各组的纵坐标分别是0.01,0.02,0.03,0.02,0.01,0.01.
∴被调查人员的频率分布直方图如右图:
(Ⅱ)ξ的所有可能取值为:0,1,2,3
p(ξ=0)==,
P(ξ=1)==,
P(ξ=2)=+=,
P(ξ=3)==,
∴ξ的分布列是:
ξ 0 1 2 3
P
∴ξ的数学期望Eξ=+1×+2×+3×=.
科目:高中数学 来源: 题型:
【题目】从某校参加期中考试的高一学生中随机抽取100名得到这100名学生语文成绩的频率分布直方图如图所示,其中成绩分组区间是:.
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)已知学生的语文成绩为123分,现从成绩在中的学生中随机抽取2人参加演讲赛,求学生被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲箱中装有3个红球,2个黑球,乙箱中装有2个红球,3个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,规定顾客购物1000元以上,可以参与抽奖一次,设奖规则如下:每次分别从以上两个箱子中各随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,奖金300元;摸出的球中有3个红球,则获得二等奖,奖金200元;摸出的球中有2个红球,则获得三等奖,奖金100元;其他情况不获奖,每次摸球结束后将球放回原箱中.
(1)求在1次摸奖中,获得二等奖的概率;
(2)若3人各参与摸奖1次,求获奖人数X的数学期望;
(3)若商场同时还举行打9折促销活动,顾客只能在两项促销活动中任选一项参与.假若你购买了价值1200元的商品,那么你选择参与哪一项活动对你有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“数学发展史”知识测验后,甲、乙、丙三人对成绩进行预测:
甲说:我的成绩比乙高;
乙说:丙的成绩比我和甲的都高;
丙说:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人中预测正确的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠APC=90°,∠BPD=120°,PB=PD.
(1)求证:平面APC⊥平面BPD;
(2)若AB=2AP=2,求三棱锥C-PBD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下五个结论:
①函数是偶函数;
②当时,函数的值域是;
③等差数列的前项和为,若,则;
④已知定义域为的函数,当且仅当时,成立.
函数的最小值4;
则上述结论中正确的是______(写出所有正确结论的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com