精英家教网 > 高中数学 > 题目详情
11.几何体的三视图如图所示,则该几何体的体积为11

分析 由三视图可知:该几何体是一长方体切去一个角,利用所给数据即可得出结论.

解答 解:由三视图可知:该几何体是一长方体切去一个角,长方体的体积为2×2×3=12,
切去的三棱锥的体积为$\frac{1}{3}×\frac{1}{2}×2×1×3$=1,
∴该几何体的体积为12-1=11.
故答案为:11.

点评 由三视图正确恢复原几何体是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C的两焦点F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项.
(1)求此椭圆C的方程;
(2)已知直线l:y=kx+2,直线l与椭圆C相交于A、B两点,若线段AB的中点横坐标为1,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2+lnx,f1(x)=$\frac{1}{6}$x2+$\frac{4}{3}$x+$\frac{5}{9}$lnx,f2(x)=$\frac{1}{2}$x2+2ax,a∈R.若f(x)<f2(x)在区间(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,AC为⊙O的直径,弦BD⊥AC交与点P,PC=1,PA=4,则sin∠ABD的值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin2($\frac{π}{4}$+x)+$\sqrt{3}$cos2x-1.
(1)求函数f(x)的单调增区间;
(2)若f($\frac{α}{2}$)=$\frac{8}{5}$,求cos(2α-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若tanθ=$\frac{1}{3}$,则cos2θ=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{5}{12}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A中的元素都是正整数,则满足“如果x∈A,那么8-x∈A”时
(1)试写出只有一个元素的集合A
(2)试写出有2个元素的集合A
(3)满足上述条件的集合A总共有多少个?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列命题:
①函数f(x)=4cos(2x+$\frac{π}{3}$)的一个对称中心为(-$\frac{5π}{12}$,0)
②已知函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,$\frac{\sqrt{2}}{2}$];
③若α,β均为第一象限角,且α>β,则sinα>sinβ.
其中所有真命题的序号有①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知关于方程(m-1)x2-2mx+m2+m-6=0的两根为α,β且满足0<α<1<β,求m的取值范围.

查看答案和解析>>

同步练习册答案