精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣a(x﹣1),其中a为实数.
(Ⅰ)讨论并求出f(x)的极值;
(Ⅱ)在a<1时,是否存在m>1,使得对任意的x∈(1,m)恒有f(x)>0,并说明理由;
(Ⅲ) 确定a的可能取值,使得存在n>1,对任意的x∈(1,n),恒有|f(x)|<(x﹣1)2

【答案】解:(Ⅰ)∵f(x)=lnx﹣a(x﹣1),∴f'(x)= ﹣a,
当a≤0时,f'(x)>0恒成立,函数在定义域(0,+∞)递增,没有极值;
当a>0时,令f'(x)=0,则x=
当x∈(0, )时,f'(x)>0,函数为增函数,
当x∈( ,+∞)时,f'(x)<0,函数为减函数,
故当x= 时,函数有极大值 ,没有极小值.
(Ⅱ)在a<1时,存在m>1,使得对任意的x∈(1,m)恒有f(x)>0,理由如下:
当a≤0时,f'(x)>0恒成立,函数在(1,m)递增,
此时f(x)>f(1)=0,
当0<a<1时, >1,
当x∈(1,m)(1, )时,f(x)>f(1)=0,
综上可得:在a<1时,存在m>1,使得对任意的x∈(1,m)恒有f(x)>0,
(Ⅲ)当a>1时,由(I)知,对于任意x∈(1,+∞),|f(x)|=a(x﹣1)﹣lnx,
令M(x)=a(x﹣1)﹣lnx﹣(x﹣1)2 , x∈(1,+∞),
则有M′(x)=
故当x∈(1, )时,M′(x)>0,M(x)
在[1, )上单调递增,
故M(x)>M(1)=0,即|f(x)|>(x﹣1)2
∴满足题意的t不存在.
当a<1时,由(Ⅱ)知存在x0>0,使得对任意的任意x∈(0,x0),|f(x)|=lnx﹣a(x﹣1),
令N(x)=lnx﹣a(x﹣1)﹣(x﹣1)2 , x∈[1,+∞),则有N′(x)=
故当x∈(1, )时,N′(x)>0,M(x)在[1, )上单调递增,故N(x)>N(1)=0,
即f(x)>(x﹣1)2 , 记x0 中较小的为x1
则当x∈(1,x1)时,恒有|f(x)|>(x﹣1)2 , 故满足题意的t不存在.
当a=1,由(1)知,当x∈(0,+∞)时,|f(x)|=x﹣1﹣lnx,
令H(x)=x﹣1﹣lnx﹣(x﹣1)2 , x∈[1,+∞),则有H′(x)=
当x>1,H′(x)<0,∴H(x)在[1,+∞)上单调递减,故H(x)<H(1)=0,
故当x>1时,恒有|f(x)|<(x﹣1)2 , 此时,任意实数t满足题意.
综上,a=1
【解析】(Ⅰ)求导,当a≤0时,f'(x)>0恒成立,函数无极值,当a>0时,当x= 时,函数有极大值 ,没有极小值.(Ⅱ)结合(I)中函数的单调性,可证得:在a<1时,存在m>1,使得对任意的x∈(1,m)恒有f(x)>0;(Ⅲ)分a>1、a<1和a=1把不等式|f(x)|<(x﹣1)2的左边去绝对值,即可得出结论.
【考点精析】关于本题考查的函数的极值与导数和函数的最大(小)值与导数,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分图象如图所示,若A( ),B( ).则下列说法错误的是(

A.φ=
B.函数f(x)的一条对称轴为x=
C.为了得到函数y=f(x)的图象,只需将函数y=2sin2x的图象向右平移 个单位
D.函数f(x)的一个单调减区间为[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.

(1)求证:EG∥平面ADF;
(2)求二面角O﹣EF﹣C的正弦值;
(3)设H为线段AF上的点,且AH= HF,求直线BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重大气污染可引起心悸、呼吸困难等心肺疾病为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

20

5

25

10

15

25

合计

30

20

50

Ⅰ)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?

Ⅱ)在上述抽取的6人中选2人,求恰好有1名女性的概率;

Ⅲ)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?(结果保留三个有效数字)

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024/p>

6.635

7.879

10.828

参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知
(Ⅰ)求b和c;
(Ⅱ)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:

若将频率视为概率,回答下列问题:

(1)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;

(2)若甲、乙两运动员各自射击1次,表示这2次射击中击中9环以上(含9环)的次数,求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.

1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;

2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,且的导函数,则( )

A. 24 B. -24 C. 10 D. -10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PC= AC,平面PAC⊥平面ABCD.

(1)点E在棱PC上,试确定点E的位置,使得PD⊥平面ABE;
(2)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

同步练习册答案