精英家教网 > 高中数学 > 题目详情
12.若$sin({\frac{π}{3}-α})=\frac{1}{3}$,则$cos({\frac{π}{3}+2α})$=(  )
A.$\frac{7}{9}$B.$\frac{2}{3}$C.$-\frac{2}{3}$D.$-\frac{7}{9}$

分析 由已知利用诱导公式可求cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,进而利用二倍角的余弦函数公式即可计算得解.

解答 解:∵$sin({\frac{π}{3}-α})=\frac{1}{3}$=cos(α+$\frac{π}{6}$),
∴$cos({\frac{π}{3}+2α})$=cos[2(α+$\frac{π}{6}$)]=2cos2(α+$\frac{π}{6}$)-1=2×$\frac{1}{9}$-1=-$\frac{7}{9}$.
故选:D.

点评 本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.M={x∈R|x≥2},a=π,则下列四个式子①a∈M;②{a}∈M;③a⊆M;④{a}∩M={π},其中正确的是(  )
A.①②B.①④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.飞机的航线和山顶在同一个铅垂直平面内,已知飞机的高度为海拔15000m,速度为1000km/h,飞行员先看到山顶的俯角为18°,经过108s后又看到山顶的俯角为78°,则山顶的海拔高度为(  )
A.(15-18$\sqrt{3}$sin18°cos78°)kmB.(15-18$\sqrt{3}$sin18°sin78°)km
C.(15-20$\sqrt{3}$sin18°cos78°)kmD.(15-20$\sqrt{3}$sin18°sin78°)km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}$=1的左右焦点分别为F1,F2,若双曲线左支上有一点M到右焦点F2距离为18,N为F2中点,O为坐标原点,则|NO|等于(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=ae-x-ex为奇函数,则f(x)<e-$\frac{1}{e}$的解集为(  )
A.(-∞,0)B.(-∞,2)C.(2,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a>0,b>0,且ab=2a+b,则a+b的最小值为2$\sqrt{2}$+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,实数m的最大值为t
(1)求实数t
(2)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是$\frac{t}{20}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果复数在z=$\frac{3-i}{2+i}$,则|z|等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=a{x^3}-\frac{3}{2}(a+2){x^2}+6x-3$
(Ⅰ) 当a=1时,求函数f(x)的极小值;
(Ⅱ)当a≤0时,试讨论曲线y=f(x)与x轴公共点的个数.

查看答案和解析>>

同步练习册答案