精英家教网 > 高中数学 > 题目详情

【题目】已知F2、F1是双曲线 =1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为(
A.3
B.
C.2
D.

【答案】C
【解析】解:由题意,F1(0,﹣c),F2(0,c), 一条渐近线方程为y= x,则F2到渐近线的距离为 =b.
设F2关于渐近线的对称点为M,F2M与渐近线交于A,
∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2﹣a2),∴c2=4a2
∴c=2a,∴e=2.
故选C.
首先求出F2到渐近线的距离,利用F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,可得直角三角形MF1F2 , 运用勾股定理,即可求出双曲线的离心率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】①用反证法证明:在一个三角形中,至少有一个内角大于或等于60°;
②已知 ,试用分析法证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣ +4x﹣3lnx在[t,t+1]上不单调,则t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为对本公司的160名员工的身体状况进行调查,先将员工随机编号为1,2,3,…,159,160,采用系统抽样的方法(等间距地抽取,每段抽取一个个体)将抽取的一个样本.已知抽取的员工中最小的两个编号为5,21,那么抽取的员工中,最大的编号应该是( )
A.141
B.142
C.149
D.150

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 = = ,且
(1)求 及| |
(2)若f(x)= ﹣2λ| |的最小值为 ,求正实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an﹣20,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求函数y=f(x)的单调区间;
(2)若x=﹣1是函数y=f(x)的一个极值点,试判断此时函数y=f(x)的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果圆(x﹣a)2+(y﹣a)2=8上总存在到原点的距离为 的点,则实数a的取值范围是( )
A.(﹣3,﹣1)∪(1,3)
B.(﹣3,3)
C.[﹣1,1]
D.[﹣3,﹣1]∪[1,3]

查看答案和解析>>

同步练习册答案