精英家教网 > 高中数学 > 题目详情

【题目】已知定义域是R上的奇函数

1)求a

2)判断R上的单调性,并用定义法证明;

3)若对任意的,不等式恒成立,求实数k的取值范围;

4)设关于x方程有零点,求实数b的取值范围.

【答案】1

2R上单调递增,证明见解析;

3

4

【解析】

1)根据奇函数的性质,,求;(2)根据(1)的结论,,变形为,利用单调性的的定义域证明;(3)函数是奇函数,不等式变形为,根据(2)可知,函数单调递增,所以恒成立,利用参变分离得恒成立,求的取值范围;(4)因为函数是奇函数,所以,所以,即:有零点,设,转化为求函数的值域.

1)因为R上的奇函数,所以,即:,∴,经检验,满足,所以

2

R上单调递增,以下证明:

,且

的单调递增性知

R上单调递增.

3)由题意,对

又由(2)知:R上单调递增

,易知其最小值是-4

,即

4)由题意知:有零点

即:

R上单调

即:有零点

令:

有零点

即:函数与函数有交点

易知:有最小值

时,有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点为椭圆的四个顶点(如图),直线过右顶点且垂直于轴.

(1)求该椭圆的标准方程;

(2)上一点(轴上方),直线分别交椭圆于两点,若,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴是短轴的倍,且右焦点为.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)直线交椭圆两点,若线段中点的横坐标为,求直线的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,表示同一函数的一组是(

A.

B.

C.

D..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且为自然对数的底数)

1)判断函数的单调性并证明;

2)判断函数的奇偶性并证明;

3)是否存在实数,使不等式对一切都成立?若存在,求出的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若存在常数M,使得对任意中至少有一个不小于M,则记作,那么下列命题正确的是( ).

A.,则数列各项均大于或等于M

B.,则

C.,则

D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:函数在区间上是减函数;

(2)当时,证明:函数只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD-A1B1C1D1中,CDAB, ABBC,AB=BC=2CD=2,侧棱AA1⊥平面ABCD.且点MAB1的中点

(1)证明:CM∥平面ADD1A1

(2)求点M到平面ADD1A1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.

(Ⅰ)若,求的面积;

(Ⅱ)若过点的直线与椭圆相交于两点,设上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

同步练习册答案