精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(Ⅰ)求的解析式及单调递减区间;

(Ⅱ)若函数无零点,求的取值范围.

【答案】(Ⅰ)单调减区间为;(Ⅱ) 的取值范围为:

【解析】试题分析:

(Ⅰ)利用切线求出参数值为2,解不等式可得减区间;

(Ⅱ)函数无零点,即方程内无解,亦即要内无解.为此构造函数,利用导数研究的单调性,可得结论,注意对分类讨论

试题解析:

)解:

又由题意有:,故.

此时,,由

所以函数的单调减区间为.

(Ⅱ)解:

,且定义域为

要函数无零点,即要内无解,

亦即要内无解.

构造函数.

时,内恒成立,所以函数内单调递减,内也单调递减.,所以在内无零点,

内也无零点,故满足条件;

时,

,则函数内单调递减,在内也单调递减,在内单调递增.,所以在内无零点;易知,而,故在内有一个零点,所以不满足条件;

,则函数内单调递减,在内单调递增.,所以时,恒成立,故无零点,满足条件;

,则函数内单调递减,在内单调递增,在内也单调递增.,所以在内均无零点.

又易知,而,又易证当时,,所以函数内有一零点,故不满足条件.

综上可得:的取值范围为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加高二某次月考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组后得到如右所示的部分频率分布直方图。观察图形信息,回答下列问题:

(Ⅰ)求分数在内的频率;

(Ⅱ)用分层抽样的方法在分数段的学生中抽取一个容量为6的样本,再从该样本中任取2人,求至多有1人在分数段内的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:

(Ⅰ)求频率分布表中的值,并补全频率分布直方图;

(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在内的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直线PQ与⊙O切于点AAB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连接CB,并延长与直线PQ相交于Q点.

(1)求证:QC·ACQC2QA2

(2)若AQ=6,AC=5,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的非负半轴为极轴建立极坐标系,且两坐标系有相同的长度单位.已知点的极坐标为 是曲线 上任意一点,点满足,设点的轨迹为曲线.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若过点的直线的参数方程为参数),且直线与曲线交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,…后得到如下频率分布直方图.

(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的中位数(精确到0.1)、众数、平均数;

(2)用分层抽样的方法抽取一个容量为20的样本,求各分数段抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在直线方程为 边上的高所在直线方程为. 

(1)求点的坐标;

(2)求直线的方程.

查看答案和解析>>

同步练习册答案