精英家教网 > 高中数学 > 题目详情

已知数列满足,向量.
(1)求证数列为等差数列,并求通项公式;
(2)设,若对任意都有成立,求实数的取值范围.

(1);(2).

解析试题分析:(1)先利用向量垂直结合向量坐标运算得到,并在等式两边同时除以得到,结合定义证明数列为等差数列,并确定其首项和公差,求出数列的通项公式,进而求出数列的通项公式;(2)先确定数列的通项公式,将不等式等价转化为,利用作商法研究数列的单调性,并确定数列的最小项,解不等式
求出实数的取值范围.
(1)因为,所以

所以数列为等差数列,且
(2)可知,令,得
即当,都有
,故
从而,解得.
考点:1.定义法证明等差数列;2.数列的单调性;3.数列不等式恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是首项的递增等差数列,为其前项和,且
(1)求数列的通项公式;
(2)设数列满足为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足为常数,
(1)当时,求
(2)当时,求的值;
(3)问:使恒成立的常数是否存在?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}中,,前项和
(1)求通项
(2)若从数列{}中依次取第项、第项、第项…第项……按原来的顺序组成一个新的数列{},求数列{}的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费费用共1.5万元,汽车的维修费
用为:第一年0.4万元,第二年0.6万元,第三年0.8万元,依等差数列逐年递增.
(1)设该车使用n年的总费用(包括购车费用)为试写出的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列中,其前项和为,且.
(1)求数列的通项公式;
(2)设,求证:
(3)设为实数,对任意满足成等差数列的三个不等正整数 ,不等式都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•湖北)已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠﹣1).
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设Sn表示数列的前n项和.
(1)若为等差数列,  推导Sn的计算公式;
(2)若, 且对所有正整数n, 有. 判断是否为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足).
(1)若数列是等差数列,求它的首项和公差;
(2)证明:数列不可能是等比数列;
(3)若),试求实数的值,使得数列为等比数列;并求此时数列的通项公式.

查看答案和解析>>

同步练习册答案