精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形ABP7P5的边长为2,P1 , P4 , P6 , P2是四边的中点,AB是正方形的其中一条边,P1P6与P2P4相交于点P3 , 则 (i=1,2,…,7)的不同值的个数为(
A.7
B.5
C.3
D.1

【答案】C
【解析】解:建立平面直角坐标系如图:

A(0,0),B(0,2),P1(0,1),P2(1,0),P3(1,1),P4(1,2),P5(2,0),P6(2,1),P7(2,2),

所以 =(0,2), =(0,1), =(1,0),

=(1,1), =(1,2), =(2,0),

=(2,1), =(2,2),

所以 =2, =0, =2, =4, =0, =2, =4,

所以 (i=1,2,…,7)的不同值有0,2,4,个数为3;

故选C

首先建立平面直角坐标系,利用平面向量的数量积公式分别计算即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是(
A.点H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延长线经过点C1
D.直线AH和BB1所成角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:“1≤x≤5是x2﹣(a+1)x+a≤0的充分不必要条件”,命题q:“满足AC=6,BC=a,∠CAB=30°的△ABC有两个”.若¬p∧q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若点D在边AC上,且AD=2DC,BD= ,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对应的边分别为a,b,c,若 <cosA,则△ABC为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.非钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在[0,+∞)上是增函数,g(x)=﹣f(|x|),若g(lgx)>g(1),则x的取值范围是(
A.(0,10)
B.(10,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在x轴上,点 在圆C上,圆心到直线2x﹣y=0的距离为 ,则圆C的方程为(
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为(
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据:10.1,9.8,10,x,10.2的平均数为10,则该组数据的方差为

查看答案和解析>>

同步练习册答案