精英家教网 > 高中数学 > 题目详情

【题目】7届世界军人运动会于20191018日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:

组别

频数

5

30

40

50

45

20

10

1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.

(参考数据:.

【答案】(1);(2)详见解析.

【解析】

1)根据频率分布表计算出平均数,进而计算方差,从而XN65142),计算P51X93)即可;

2)列出Y所有可能的取值,分布求出每个取值对应的概率,列出分布列,计算期望,进而可得需要的总金额.

解:(1)由已知频数表得:

,则

,所以

X服从正态分布

所以

2)显然,

所以所有Y的取值为15304560

所以Y的分布列为:

Y

15

30

45

60

P

所以

需要的总金额为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新疆小南瓜以沙甜闻名全国,小田计划从新疆运输小南瓜去上海,随机从某瓜农的瓜地里挑选了100个,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示,将频率视为概率.

1)请根据频率分布直方图估计该瓜农的小南瓜的平均质量;

2)已知瓜地里还有2万个小南瓜已经成熟,可以采摘,小田想全部购买,可是瓜农要求超过400克的小南瓜以5元一个的价格出售,其他的以3元一个的价格出售.将频率视为概率,若新疆到上海往返的运费约2000元,请问这2万个小南瓜在上海以每斤(500克)多少元定价才能保证小田的利润不少于5000元?(结果保留一位小数)

3)某天王阿姨在上海某超市的蔬菜柜台上看到小田从新疆采摘的新疆小南瓜,已知柜台上有若干个,若质量超过500克的小南瓜为优质品,王阿姨随机购买了20个小南瓜,求王阿姨购买的小南瓜中优质品个数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率,其右焦点为.

1)求椭圆的方程;

2)过作夹角为的两条直线分别交椭圆,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量满足:||2||1

1)若(2)=1,求的值;

2)设向量的夹角为θ.若存在tR,使得,求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.2015年以来,“一带一路”建设成果显著.如图是20152019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )

A.这五年,出口总额之和比进口总额之和

B.这五年,2015年出口额最少

C.这五年,2019年进口增速最快

D.这五年,出口增速前四年逐年下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,.

Ⅰ)求椭圆的方程;

Ⅱ)是否存在定点使得为定值?若存在,求出点坐标并求出此定值;若不存在,说明理由.

【答案】(Ⅰ).

【解析】试题分析:(1)当轴重合时,垂直于轴,得,,从而得椭圆的方程;(2)由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,所以把坐标化,可得点的轨迹是椭圆,从而求得定点和点.

试题解析:轴重合时,, ,所以垂直于轴,得, ,椭圆的方程为.

焦点坐标分别为, 当直线斜率不存在时,点坐标为;

当直线斜率存在时,设斜率分别为, , 得:

, 所以:, 则:

. 同理:, 因为

, 所以, , 由题意知, 所以

, 设,则,即,由当直线斜率不存在时,点坐标为也满足此方程,所以点在椭圆.存在点和点,使得为定值,定值为.

考点:圆锥曲线的定义,性质,方程.

【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量,得,,从而得椭圆的方程,第二问由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把坐标化,求得点的轨迹方程是椭圆,从而求得存在两定点和点.

型】解答
束】
21

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我区的中小学办学条件在政府的教育督导下,迅速得到改变.督导一年后.分别随机抽查了高中(用表示)与初中(用表示)各10所学校.得到相关指标的综合评价得分(百分制)的茎叶图如图所示.则从茎叶图可得出正确的信息为(80分及以上为优秀)(

①高中得分与初中得分的优秀率相同

②高中得分与初中得分的中位数相同

③高中得分的方差比初中得分的方差大

④高中得分与初中得分的平均分相同

A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若关于的方程有且只有一个实数根,求实数的取值范围;

2)若函数的图象总在函数图象的下方,求实数的取值范围.

查看答案和解析>>

同步练习册答案