精英家教网 > 高中数学 > 题目详情
13.某地要建造一个水库,设计中,水库的最大容水量为12800立方米,山洪暴发时,预测注入水库的水量Sn(立方米)与天数n(n∈N+,n≤10)的关系是Sn=5000$\sqrt{n(n+24)}$,此水库原有水量为80000立方米,泄水闸每天的泄水量为4000立方米,若山洪暴发的第一天就打开泄水闸.
(1)写出第n天水库的水量f(n)与天数n之间的函数关系式;
(2)在这10天中,堤坝会发生危险吗?(水库的水量不小于它的最大容水量,堤坝就会发生危险)

分析 (1)根据条件求出注水量和泄水量,即可得到结论.
(2)根据堤坝会发生危险的条件,解不等式即可.

解答 解:(1)设第n天注入水库的水量为5000$\sqrt{n(n+24)}$立方米,泄水为4000n立方米,
则第n天水库的容水量为f(n)=8000+5000$\sqrt{n(n+24)}$-4000n,(n∈N+,n≤10).
(2)设第n天会发生危险,则
5000$\sqrt{n(n+24)}$-4000n≥128000-80000,
即5$\sqrt{n(n+24)}$≥4n+48,
也即n2+24n-256≥0,
解得n≤-32或n≥8,
由于n∈N,所以取n≥8,即第8天时,总水量就超过水库的最大容量,也即该水库堤坝在第8天会发生危险.

点评 本题主要考查函数的应用问题,根据条件建立函数关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{2}{x}$的单调减区间为(  )
A.RB.(-∞,0)∪(0,+∞)C.(-∞,0),(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤$\frac{π}{6}$时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{2}$)C.(-∞,2)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知E,F分别是平行四边形ABCD的边BC,CD中点,AF与DE相交于点G,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{GC}$=$\frac{3}{5}\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点为F1,F2,点P为双曲线上一点,且PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$.
(1)求双曲线的离心率;
(2)求双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设sinθ=$\frac{3}{5}$,cosθ=-$\frac{4}{5}$,则2θ的终边所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x>$\frac{1}{2}$,则函数f(x)=$\frac{1-2x}{{x}^{2}-2x+\frac{11}{4}}$的最小值是-$\frac{4\sqrt{2}+2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=(x-1)3+x+2,{an}是公差为$\frac{1}{2}$的等差数列,且f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)=18,则a1=(  )
A.-$\frac{1}{4}$B.-$\frac{7}{4}$C.-$\frac{5}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B,C是△ABC的三个内角,且满足2sinA=$\sqrt{3}$sinC-sinB,则角A的取值范围为(  )
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$]C.(0,$\frac{π}{2}$]D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

同步练习册答案