精英家教网 > 高中数学 > 题目详情

已知函数,函数的导函数,且,其中为自然对数的底数.
(1)求的极值;
(2)若,使得不等式成立,试求实数的取值范围;
(3)当时,对于,求证:

(1)当时,没有极值;
时,存在极大值,且当时,.
(2).
(3)见解析.

解析试题分析:(1) 首先确定函数的定义域为,求导数.为确定函数的极值,应讨论的不同情况.
(2) 首先求出,将问题转化成,使得成立,
引入,将问题可转化为:
利用导数求的最大值,得解.
(3)当时,,构造函数,即
应用导数研究函数的单调性、极值,得到.
方法比较明确,分类讨论、转化与化归思想的应用,是解决问题的关键.
试题解析:(1) 函数的定义域为
时,上为增函数,没有极值;     1分
时,
时,;若时,
存在极大值,且当时,
综上可知:当时,没有极值;当时,存在极大值,且当时,                       4分
(2) 函数的导函数
              5分
,使得不等式成立,
,使得成立,
,则问题可转化为:
对于,由于
时,
,从而上为减函数,
        &nbs

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

f(x)=,其中a为正实数.
①当a时,求f(x)的极值点;②若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-ln xx∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的单调区间与极值;
(2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 (其中是自然对数的底)
(1) 若处取得极值,求的值;
(2) 若存在极值,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)确定yf(x)在(0,+∞)上的单调性;
(2)若a>0,函数h(x)=xf(x)-xax2在(0,2)上有极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3x2cxd(acd∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求acd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

同步练习册答案