【题目】已知f(x)=|2x﹣1|.
(1)求f(x)≤3x的解集;
(2)求f(x)+|x+1|≤1的解集.
【答案】
(1)解:由f(x)≤3x得① 或②
解①得 ,解②得 .
∴f(x)≤3x的解集为 .
(2)解:f(x)+|x+1|≤1即|2x﹣1|+|x+1|≤1.
当 时,不等式为2x﹣1+x+1≤1,解得 ,∴解集为空集;
当 ,不等式为﹣2x+1+x+1≤1,解得x≥1,∴解集为空集;
当x≤﹣1时,不等式为﹣2x+1﹣x﹣1≤1,∴解集为空集.
综上所述,x的取值范围为空集.
【解析】(1)利用绝对值的几何意义,即可求f(x)≤3x的解集;(2)利用绝对值的几何意义,去掉绝对值,即可求f(x)+|x+1|≤1的解集.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.
(1)求的方程;
(2)是否存在直线,使得与交于两点,与只有一个公共点,且?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).
编 号 | 分 组 | 频 数 |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
续 表
编 号 | 分 组 | 频 数 |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合计 | 200 |
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设=,=.
(1)求与的夹角的余弦值; (2)若与k-2互相垂直,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列和等比数列,其中的公差不为.设是数列
的前项和.若、、是数列的前项,且.
(Ⅰ)求数列和的通项公式;
(Ⅱ)若数列为等差数列,求实数;
(Ⅲ)构造数列,,,,,,,,,…,,,,,…,,…,
若该数列前项和,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com