精英家教网 > 高中数学 > 题目详情

【题目】已知圆是圆M内一定点,动点P为圆M上任意一点,线段PN的垂直平分线l和半径MP相交于点C.

1)求点C的轨迹方程;

2)设直线C交于不同两点AB,点O为坐标原点,当的面积S取最大值时,求的值.

【答案】1;(2

【解析】

1)根据几何关系可知,即点C的轨迹是一个以MN为焦点的椭圆,由此可得椭圆方程;

2)联立直线方程和椭圆方程可得,利用韦达定理和弦长公式可得,又点O到直线l的距离,由此可得面积,再利用基本不等式即可求出结果.

1)如图,由几何关系可得,

,所以点C的轨迹是一个以MN为焦点的椭圆,

由题意知,则

故椭圆C的标准方程为

2)设,由

由韦达定理可得,

O到直线l的距离

当且仅当,即时,S取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且AB1BC2 ABC=60°PA⊥平面ABCDAEPCE

下列四个结论:①ABAC;②AB⊥平面PAC;③PC⊥平面ABE;④BEPC.正确的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ6sinθ,建立以极点为坐标原点,极轴为x轴正半轴的平面直角坐标系.直线l的参数方程是(t为参数)

(1)求曲线C的直角坐标方程;

(2)若直线l与曲线C相交于AB两点,且|AB|=,求直线的斜率k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生的必修课程.惠州市某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生中抽取了100人进行调查.

1)已知在被抽取的学生中高一班学生有6名,其中3名对游泳感兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳感兴趣的概率;

2)该研究性学习小组在调查中发现,对游泳感兴趣的学生中有部分曾在市级或市级以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一班和高一班获奖学生中随机各抽取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

班级

市级

比赛获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上

比赛获奖人数

2

2

1

0

2

3

3

2

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,离心率为为坐标原点.

(1)求椭圆的标准方程;

(2)设为椭圆上的三点,交于点,且,当的中点恰为点时,判断的面积是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)直线轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的极值;

(Ⅱ)若实数为整数,且对任意的时,都有恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足,等比数列的首项为2,公比为.

1)若,问等于数列中的第几项?

2)若,数列的前项和分别记为的最大值为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且

)求数列的通项公式;

)若数列满足,求数列的通项公式;

)在()的条件下,设,问是否存在实数使得数列是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案