精英家教网 > 高中数学 > 题目详情

【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

2)现在要从年龄较大的第12组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;

【答案】(1)平均数为岁;中位数为岁(2)

【解析】

1)先根据频率分布直方图求出,再求其平均值.
2)按照分层抽样的方式抽取的人数分别为2人,3, 设第1组抽取的人员为;第2组抽取的人员为.列举出随机抽取两人的情况,再求出概率.

解:(1)由,得

平均数为岁;

设中位数为x,则,∴.

2)根据题意,第12组分的人数分别为人,人,按照分层抽样的方式抽取的人数分别为2人,3.

设第1组抽取的人员为;第2组抽取的人员为.

于是,在5人随机抽取两人的情况有:

10.

满足题意的有:6.

所以第2组恰好抽到1人的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥为等边三角形,平面平面中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点到两点的距离之比为.

1)求动点的轨迹的方程;

2)若为椭圆上一点,过点作曲线的切线与椭圆交于另一点,求面积的取值范围(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学生假期参与志愿服务活动的情况,随机调查了名男生,名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):

超过小时

不超过小时

1)能否有的把握认为该校学生一周参与志愿服务活动时间是否超过小时与性别有关?

(2)以这名学生参与志愿服务活动时间超过小时的频率作为该事件发生的概率,现从该校学生中随机抽查名学生,试估计这名学生中一周参与志愿服务活动时间超过小时的人数.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福彩是利国利民游戏,其刮刮乐之《蓝色奇迹》:如图(1)示例,刮开票面看到最左侧一列四个两位数字为“我的号码”,最上行四个两位数为“中奖号码”,这八个两位数是0099这一百个数字随机产生的,若两个数字相同即中得其相交线上的奖金,奖金可以累加.小明买的一张《蓝色奇迹》刮刮乐如图(2),除了一个“我的号码”外,他已经刮开票面上其它所有数字,依据目前的信息,小明从这张刮刮乐得到的奖金额高于600元的概率为(无所得税)( )

图(1) 图(2)

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三角形中,,平面与半圆弧所在的平面垂直,点为半圆弧上异于的动点,的中点.

1)求证:

2)求三棱锥体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,ADBCABBCBDDC,点EBC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AEACDE,得到如图2所示的几何体.

AD1,二面角CABD的平面角的正切值为,求二面角BADE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为且满足,当时,.

1)判断上的单调性并加以证明;

2)若方程有实数根,则称为函数的一个不动点,设正数为函数的一个不动点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以正四棱锥VABCD的底面中心O为坐标原点建立空间直角坐标系Oxyz,其中OxBCOyABEVC的中点.正四棱锥的底面边长为2a,高为h,且有cos〉=-.

1)求的值;

2)求二面角B-VC-D的余弦值.

查看答案和解析>>

同步练习册答案