精英家教网 > 高中数学 > 题目详情
已知ABC-A1B1C1是各条棱长均等于a的正三棱柱,D是侧棱CC1的中点.点C1到平面AB1D的距离(  )
A.
2
4
a
B.
2
8
a
C.
3
2
4
a
D.
2
2
a
以A为原点,以垂直AC的直线为x轴,以AC为y轴,以AA1为z轴,建立空间直角坐标系,
∵ABC-A1B1C1是各条棱长均等于a的正三棱柱,D是侧棱CC1的中点,
∴A(0,0,0),B1(
3
2
a,
a
2
,a)
,D(0,a,
a
2
),C1(0,a,a),
AB1
=(
3
2
a,
1
2
a,a)
AD
=(0,a,
a
2
)
DC1
=(0,0,
a
2
)

设平面AB1D的法向量
n
=(x,y,z)

n
AB1
=0,
n
AD
=0

3
a
2
x+
a
2
y+az=0
ay+
a
2
z=0

n
=(
3
,1,-2

∴C1到平面AB1D的距离d=
|
DC1
n
|
|
n
|
=
a
3+1+4
=
2
a
4

故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设直线平面,过平面外一点都成角的直线有且只有(     )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4
5
?若存在,求出线段CQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥M-ABCD中,底面ABCD是边长为2的正方形,侧棱AM的长为3,且AM和AB、AD的夹角都是60°,N是CM的中点,设
a
=
AB
b
=
AD
c
=A
M
,试以
a
b
c
为基向量表示出向量
BN
,并求BN的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,求点P到BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直二面角α-l-β,A∈α,B∈β,A,B两点均不在直线l上,又直线AB与l成30°角,且线段AB=8,则线段AB的中点M到l的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABC-A1B1C1中,四边形AA1B1B是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=1,AB=2,∠A1AB=60°.
(1)求证:平面CA1B⊥平面A1ABB1
(2)求B1C1到平面A1CB的距离;
(3)求直线A1C与平面BCC1B1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD的各边与两条对角线的长都是1,点P在边AB上移动,点Q在CD上移动,则点P与Q的最短距离为(  )
A.
1
2
B.
2
2
C.
3
4
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a,b是空间两条不相交的直线,那么过直线b且平行于直线a的平面(  )
A.有且仅有一个B.至少有一个
C.至多有一个D.有无数个

查看答案和解析>>

同步练习册答案