精英家教网 > 高中数学 > 题目详情
8.如图,在△ABC中,AB=2,$\frac{3}{2}$cos2B+5cosB-$\frac{1}{2}$=0,且点D在线段BC上.
(1)若∠ADC=$\frac{3π}{4}$,求AD的长;
(2)若BD=2DC,$\frac{sin∠BAD}{sin∠CAD}$=4$\sqrt{2}$,求△ABD的面积.

分析 (1)由$\frac{3}{2}cos2B+5cosB-\frac{1}{2}=0$,可得3cos2B+5cosB-2=0,求出sinB,再利用正弦定理求得AD;
(2)(2)由BD=2DC,得$\frac{{{S_{△ABD}}}}{{{S_{△ABD}}}}=2$,及$\frac{{\frac{1}{2}AB•AD•sin∠BAD}}{{\frac{1}{2}AC•AD•sin∠CAD}}=2$,利用$\frac{sin∠BAD}{sin∠CAD}=4\sqrt{2}$,得AC
由余弦定理AC2=AB2+BC2-2AB•BC•cosB可得BC、BD=4,再求面积.

解答 解:(1)由$\frac{3}{2}cos2B+5cosB-\frac{1}{2}=0$,可得3cos2B+5cosB-2=0,
所以$cosB=\frac{1}{3}$或cosB=-2(舍去)            …(2分)
所以$sinB=\frac{{2\sqrt{2}}}{3}$…(3分)
因为$∠ADC=\frac{3π}{4}$,所以$∠ADB=\frac{π}{4}$…(4分)
由正弦定理可得:$\frac{AB}{sin∠ADB}=\frac{AD}{sinB}$,所以$AD=\frac{8}{3}$…(6分)
(2)由BD=2DC,得$\frac{{{S_{△ABD}}}}{{{S_{△ABD}}}}=2$,所以$\frac{{\frac{1}{2}AB•AD•sin∠BAD}}{{\frac{1}{2}AC•AD•sin∠CAD}}=2$…(7分)
因为$\frac{sin∠BAD}{sin∠CAD}=4\sqrt{2}$,AB=2,所以$AC=4\sqrt{2}$…(9分)
由余弦定理AC2=AB2+BC2-2AB•BC•cosB可得BC=6或$BC=-\frac{14}{3}$(舍去)                                     …(11分)
所以:BD=4,
所以${S_{△ABD}}=\frac{1}{2}•AB•BD•sinB=\frac{1}{2}×2×4×\frac{{2\sqrt{2}}}{3}=\frac{{8\sqrt{2}}}{3}$…(12分)

点评 本题考查了正余弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a=3$\sqrt{3}$,c=2,B=150°,求边b的长及S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.tan60°=(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对于定义域为R的函数f(x),如果存在非零常数T,对任意x∈R,都有f(x+T)=Tf(x)成立,则称函数f(x)为“T函数”.
(1)设函数f(x)=x,判断f(x)是否为“T函数”,说明理由;
(2)若函数g(x)=ax(a>0,且a≠1)的图象与函数y=x的图象有公共点,证明:g(x)为“T函数”;
(3)若函数h(x)=cosmx为“T函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=-1对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log${\;}_{\frac{10}{7}}$6f(log${\;}_{\frac{10}{7}}$6),c=60.6f(60.6),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列叙述错误的是(  )
A.若A∈l,B∈l,且A∈α,B∈α,则l?α
B.若直线 a∩b=A,则直线a与直线b能确定一个平面
C.任意三点A、B、C可以确定一个平面
D.若P∈α∩β且α∩β=l,则P∈l

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)=$\left\{\begin{array}{l}{2x-1,(x≥2)}\\{f[f(x+1)]+1,(x<2)}\end{array}\right.$,则f(1)=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知映射f:R→R,x→2x+1,求得f(x)=7时的原象x是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设M={3,a},N={1,2},M∩N={1},M∪N=(  )
A.{1,3,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}

查看答案和解析>>

同步练习册答案