ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Ê×Ïîa1=a£¬ÇÒan+1=2Sn+1£¬n¡ÊN*
£¨1£©ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇóʵÊýaµÄÖµ£»
£¨2£©Éèbn=nan£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£»
£¨3£©Éè¸÷ÏΪ0µÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãci•ci+1£¼0µÄÕûÊýiµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£¬Áîcn=
bn-4bn
(n¡ÊN*)
£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£®
·ÖÎö£º£¨1£©¸ù¾Ýan+1=2Sn+1£¨n¡ÊN*£©£¬Àà±È¿ÉµÃan=2Sn-1+1£¨n¡Ý2£¬n¡ÊN*£©£¬Á½Ê½Ïà¼õ¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©È·¶¨ÊýÁеÄͨÏÀûÓôíλÏà¼õ·¨£¬¿ÉÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£»
£¨3£©È·¶¨C1C2=-1£¼0£¬n¡Ý2ʱ£¬Cn£¾0£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃan+1=2Sn+1£¬an=2Sn-1+1£¨n¡Ý2£¬n¡ÊN*£©£¬
Á½Ê½Ïà¼õµÃan+1-an=2£¨Sn-Sn-1£©=2an£¬¼´an+1=3an£¨n¡Ý2£¬n¡ÊN*£©£®
ÓÖa2=2S1+1=2a1+1=3=3a1£¬ËùÒÔa1=1
ËùÒÔÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï¹«±ÈΪ3µÄµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©µÃ£¬an=3n-1
¡àbn=nan=n•3n-1
¡àTn=1+2•3+3•32+¡­+n•3n-1£¬
¡à3Tn=1•3+2•32+¡­+£¨n-1£©•3n-1+n•3n£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º-2Tn=1+3+32+¡­+3n-1-n•3n£¬
¡àTn=
2n-1
4
3n+
1
4
£»
£¨3£©ÓÉ£¨2£©Öª£¬bn=n•3n-1£¬
¡ßcn=
bn-4
bn
(n¡ÊN*)

¡àC1=-3£¬C2=
1
3
£¬¡àC1C2=-1£¼0
¡ßCn+1-Cn=
4
bn
-
4
bn+1
=
4(2n+3)
n(n+)•3n
£¾0
¡ßC2=
1
3
£¾0£¬¡àn¡Ý2ʱ£¬Cn£¾0
¡àÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁУ¬¿¼²éÊýÁеÄÇóºÍ£¬¿¼²éж¨Ò壬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq¡Ù1£¬Sn±íʾÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬Tn±íʾÊýÁÐ{an}µÄÇ°nÏîµÄ³Ë»ý£¬Tn£¨k£©±íʾ{an}µÄÇ°nÏîÖгýÈ¥µÚkÏîºóÊ£ÓàµÄn-1ÏîµÄ³Ë»ý£¬¼´Tn£¨k£©=
Tn
ak
£¨n£¬k¡ÊN+£¬k¡Ün£©£¬ÔòÊýÁÐ
SnTn
Tn(1)+Tn(2)+¡­+Tn(n)
µÄÇ°nÏîµÄºÍÊÇ
a12
2-q-q-1
£¨n+nq-
q-qn+1+1-q1-n
1-q
£©
a12
2-q-q-1
£¨n+nq-
q-qn+1+1-q1-n
1-q
£©
£¨ÓÃa1ºÍq±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÊýÁÐ{an}µÄͨÏîan=
1
pn-q
£¬ÊµÊýp£¬qÂú×ãp£¾q£¾0ÇÒp£¾1£¬snΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨1£©ÇóÖ¤£ºµ±n¡Ý2ʱ£¬pan£¼an-1£»
£¨2£©ÇóÖ¤sn£¼
p
(p-1)(p-q)
(1-
1
pn
)
£»
£¨3£©Èôan=
1
(2n-1)(2n+1-1)
£¬ÇóÖ¤sn£¼
2
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬an£¾0£¬Sn=
a
2
n
+an
2
£¬n¡ÊN*£¬
£¨1£©ÇóÖ¤£º{an}ÊǵȲîÊýÁУ»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2an+bn£¬ÇóÊýÁÐ{bn}µÄͨÏʽbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉÌÇð¶þÄ££©ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÈôÊýÁÐ{an}µÄ¸÷Ïî°´ÈçϹæÂÉÅÅÁУº
1
2
£¬
1
3
£¬
2
3
£¬
1
4
£¬
2
4
£¬
3
4
£¬
1
5
£¬
2
5
£¬
3
5
£¬
4
5
¡­£¬
1
n
£¬
2
n
£¬¡­£¬
n-1
n
£¬¡­ÓÐÈçÏÂÔËËãºÍ½áÂÛ£º
¢Ùa24=
3
8
£»
¢ÚÊýÁÐa1£¬a2+a3£¬a4+a5+a6£¬a7+a8+a9+a10£¬¡­ÊǵȱÈÊýÁУ»
¢ÛÊýÁÐa1£¬a2+a3£¬a4+a5+a6£¬a7+a8+a9+a10£¬¡­µÄÇ°nÏîºÍΪTn=
n2+n
4
£»
¢ÜÈô´æÔÚÕýÕûÊýk£¬Ê¹Sk£¼10£¬Sk+1¡Ý10£¬Ôòak=
5
7
£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ
¢Ù¢Û¢Ü
¢Ù¢Û¢Ü
£®£¨½«ÄãÈÏΪÕýÈ·µÄ½áÂÛÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôÊýÁÐ{an}µÄÇ°nÏîºÍSn=2n+1£¬ÔòÊýÁÐ{an}ΪµÈ±ÈÊýÁУ»
¢ÚÔÚ¡÷ABCÖУ¬Èç¹ûA=60¡ã£¬a=
6
£¬b=4
£¬ÄÇôÂú×ãÌõ¼þµÄ¡÷ABCÓÐÁ½½â£»
¢ÛÉ躯Êýf£¨x£©=x|x-a|+b£¬Ôòº¯Êýf£¨x£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇa2+b2=0£»
¢ÜÉèÖ±ÏßϵM£ºxcos¦È+£¨y-2£©sin¦È=1£¨0¡Ü¦È¡Ü2¦Ð£©£¬ÔòMÖеÄÖ±ÏßËùÄÜΧ³ÉµÄÕýÈý½ÇÐÎÃæ»ý¶¼ÏàµÈ£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¢Û
¢Û
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸