精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.
(1)求证:BF∥平面ADP;
(2)求二面角B﹣DF﹣P的余弦值.

【答案】
(1)证明:取PD中点G,连结GF,AG,

∵AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点,

∴FG AB,∴四边形ABFG是平行四边形,∴AG∥BF,

∵AG平面ADP,BF平面ADP,∴BF∥平面ADP


(2)解:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,

设PE=1,则B(2,2,0),D(0,0,0),P(0,0,2),C(0,3,0),E(0,1,2),F(0,2,1),

=(2,2,0), =(0,2,1), =(0,0,2),

设平面BDF的法向量 =(x,y,z),

,取x=1,得 =(1,﹣1,2),

设平面PDF的法向量 =(a,b,c),

,取a=1,则 =(1,﹣1,0),

设二面角B﹣DF﹣P的平面角为θ,

则cosθ= = =

∴二面角B﹣DF﹣P的余弦值为


【解析】(1)取PD中点G,连结GF,AG,推导出四边形ABFG是平行四边形,从而AG∥BF,进而能证明BF∥平面ADP.(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣DF﹣P的余弦值.
【考点精析】掌握直线与平面平行的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求a的值及样本中男生身高在[185,195](单位:cm)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在[145,155)和[185,195](单位:cm)内的男生中任选两人,求这两人的身高都不低于185cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣a|,a∈R.
(1)当a=1时,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函数g(x)=f(x)﹣|x﹣3|的值域为A,且[﹣1,2]A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=cos(2x+ )的图象沿x轴向右平移φ(φ>0)个单位,得到一个偶函数的图象,则φ的一个可能取值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节期间商场为活跃节日气氛,特举行“购物有奖”抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,每次中奖可以获得20元购物代金券,方案乙的中奖率为 ,每次中奖可以获得30元购物代金券,未中奖则不获得购物代金券,每次抽奖中奖与否互不影响,已知小明通过购物获得了2次抽奖机会.
(1)若小明选择方案甲、乙各抽奖一次,记他累计获得的购物代金券面额之和为X,求X≤30的概率;
(2)设小明两次抽奖都选择方案甲或都选择方案乙,且都选择方案乙时,已算得,累计获得的购物代金券面额之和X1的数学期望E(X1)=24,问:小明选择这两种方案中的何种方案抽奖,累计获得的购物代金券面额之和的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P在曲线y= ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:f(x)= ,且f(x+2)=f(x),g(x)= ,则方程f(x)=g(x)在区间[﹣7,3]上的所有实数根之和为(
A.﹣9
B.﹣10
C.﹣11
D.﹣12

查看答案和解析>>

同步练习册答案