精英家教网 > 高中数学 > 题目详情
已知,当x∈[1,3]时,f(x)的值域为A,且A⊆[n,m](n<m).
(1)若a=1,求m-n的最小值;
(2)若m=16,n=8,求a的值;
(3)若m-n≤1,且A=[n,m],求a的取值范围.
【答案】分析:(Ⅰ)利用函数的单调性可得f(x)∈[f(1),f(3)],由,求得m-n的最小值.
(Ⅱ)由题意可得,当m=16时,a≤16x-x2恒成立,a≤(-x2+16x)min =15.当n=8时,a≥8x-x2恒成立,a≥(-x2+8x)max =15,由此求得a的值.
(3)根据 m-n≤1,且A=[n,m],分三种情况,分别求出a的取值范围,再取并集,即得所求.
解答:解:(Ⅰ)∵a=1,∴f(x)在区间[1,3]上单调递增,∴f(x)∈[f(1),f(3)],…(3分)
∴当x∈[1,3]时,,即m-n的最小值是.…(5分)
(Ⅱ)由题意可得,当m=16时,恒成立,即当x∈[1,3]时,a≤16x-x2恒成立,
∴a≤(-x2+16x)min =15.…(7分)
当n=8时,恒成立,即当x∈[1,3]时,a≥8x-x2恒成立,∴a≥(-x2+8x)max =15.…(9分)
综上可得:a=15.…(10分)
(Ⅲ)①若,即0<a≤1时,在[1,3]单调递增,
,a无解.…(11分)
②当,即1<a<9时,递减,在递增,
,∴.…(13分)
③当,即a≥9时,函数f(x)在区间[1,3]上单调递减,
,a无解;…(14分),
综上可得:.…(16分)
点评:本题主要考查利用函数的单调性求函数的值域,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年浙江省宁波市金兰合作组织高一(上)期中数学试卷(解析版) 题型:选择题

已知,当x∈[1,3]时的值域为[n,m],则m-n的值是( )
A.
B.
C.1
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市金兰合作组织高一(上)期中数学试卷(解析版) 题型:选择题

已知,当x∈[1,3]时的值域为[n,m],则m-n的值是( )
A.
B.
C.1
D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省孝感高中高三(上)7月综合测试数学试卷1(文科)(解析版) 题型:选择题

已知,当x∈[1,3]时的值域为[n,m],则m-n的值是( )
A.
B.
C.1
D.

查看答案和解析>>

科目:高中数学 来源:2012年黑龙江省哈尔滨九中高考数学三模试卷(文科)(解析版) 题型:选择题

已知,当x∈[1,3]时的值域为[n,m],则m-n的值是( )
A.
B.
C.1
D.

查看答案和解析>>

同步练习册答案