精英家教网 > 高中数学 > 题目详情
a
=(-1,1),
b
=(4,3),
c
=(5,-2),
(1)求证
a
b
不共线,并求
a
b
的夹角的余弦值.
(2)求
c
a
方向上的投影.
分析:(1)根据共线向量的判断方法易得
a
b
不共线,再结合向量的数量积的运算,可得cos<a,b>的值,
(2)根据数量积的运算与投影的概念,可得
c
a
方向上的投影为
a•c
|a|
,代入向量的坐标,计算可得答案.
解答:解:(1)∵
a
=(-1,1),
b
=(4,3),且-1×3≠1×4,
a
b
不共线,
a
b
=-1×4+1×3=-1,|
a
|=
2
,|
b
|=5,
∴cos<
a
b
>=
a•b
|a||b|
=
-1
5
2
=-
2
10

(2)∵
a
c
=-1×5+1×(-2)=-7,
c
a
方向上的投影为
a•c
|a|
=
-7
2
=-
7
2
2
点评:本题考查向量的数量积的运用,要求学生能熟练计算数量积并通过数量积来求出向量的模和夹角或证明垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈{-1,1,
1
2
,3}
,则使函数y=xa的定义域是R,且为奇函数的所有a的值是(  )
A、1,3B、-1,1
C、-1,3D、-1,1,3

查看答案和解析>>

科目:高中数学 来源: 题型:

1、设A={x|-1<x<1},B={x|x-a>0},若A⊆B,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值;
(Ⅲ)若数组A=(a1,a2,a3)中的“元”满足a12+a22+a32=1.设数组Bm(m=1,2,3,…,n)含有四个“元”bm1,bm2,bm3,bm4,且bm12+bm22+bm32+bm42=m,求A与Bm的所有含有三个“元”的子数组的关系数C(A,Bm)(m=1,2,3,…,n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)设A是如下形式的2行3列的数表,
a b c
d e f
满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为A的第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.
(1)对如下数表A,求k(A)的值
1 1 -0.8
0.1 -0.3 -1
(2)设数表A形如
1 1 -1-2d
d d -1
其中-1≤d≤0.求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设A={x|-1<x<1},B={x|x-a>0},若A⊆B,则a的取值范围是


  1. A.
    (-∞,-1)
  2. B.
    (-∞,-1]
  3. C.
    [1,+∞)
  4. D.
    (1,+∞)

查看答案和解析>>

同步练习册答案