精英家教网 > 高中数学 > 题目详情
13.函数$f(x)={log_{\frac{1}{3}}}({9-{x^2}})$的定义域为(-3,3)值域为[-2,+∞).

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则9-x2>0,
即x2<9,解得-3<x<3,
故函数的定义域为(-3,3),
∵0<9-x2≤9,
∴$f(x)={log_{\frac{1}{3}}}({9-{x^2}})$≥log${\;}_{\frac{1}{3}}9$=-2,
故值域为[-2,+∞),
故答案为:(-3,3),[-2,+∞)

点评 本题主要考查函数的定义域和值域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.f(x)=-$\sqrt{4+\frac{1}{{x}^{2}}}$,{an}的前n项和为Sn,点P(an,-$\frac{1}{{a}_{n+1}}$)在y=f(x)的图象上,a1=1,an>0
(1)求an
(2){bn}点前n项和为Tn,且$\frac{{T}_{n+1}}{{{a}^{2}}_{n}}$=$\frac{{T}_{n}}{{{a}^{2}}_{n+1}}$+16n2-8n-3,求b1的值,使{bn}等差
(3)求证:Sn>$\frac{\sqrt{4n+1}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,A,B,C是三角形的三内角.设tan$\frac{A+B}{2}+tan\frac{C}{2}=\frac{{4\sqrt{3}}}{3}$.
(1)若sinB•sinC=cos2$\frac{A}{2}$,求A,B,C的值;
(2)若C为锐角,求sinA+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=(  )时,{an}的前n项和最大.
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某程序框图如图所示,该程序运行后输出的值是(  )
A.6B.8C.100D.102

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$y=sin(x+\frac{π}{4})+sin(x-\frac{π}{4})$是(  )
A.偶函数且最大值为2B.奇函数且最大值为2
C.奇函数且最大值为$\sqrt{2}$D.偶函数且最大值为$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α是第二象限角,且sinα=$\frac{3}{5}$,f(x)=sin2αcosx+cos2αsinx的图象关于直线x=x0对称,则tanx0=(  )
A.-$\frac{7}{24}$B.$\frac{7}{24}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称ABCDE
销售额x(千万元)35679
利润额y(千万元)23345
(1)求利润额y对销售额x的回归直线方程;
(2)当销售额为4(千万元)时,估计利润额的大小.
提示:$\stackrel{∧}{b}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则(  )
A.$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}$B.$\overrightarrow{BD}-\overrightarrow{CF}+\overrightarrow{DF}=\overrightarrow{0}$C.$\overrightarrow{AD}+\overrightarrow{CE}-\overrightarrow{CF}=\overrightarrow{0}$D.$\overrightarrow{BD}-\overrightarrow{BE}-\overrightarrow{FC}=\overrightarrow{0}$

查看答案和解析>>

同步练习册答案