精英家教网 > 高中数学 > 题目详情
12.若函数f(x)=cos$\frac{x+2φ}{3}$(φ∈[-π,0])是奇函数,则下列说法错误的是(  )
A.f(-1-6π)+f(1+12π)=0
B.函数f(x)的一个单调递减区间为[$\frac{17π}{2}$,10π]
C.函数f(x)的一个对称中心为(3π,0)
D.函数g(x)=f(6x)-$\frac{1}{2}$在[0,9]上有4个零点

分析 先化简函数,再分别判断4个选项,即可得出结论.

解答 解:由题意,f(0)=cos$\frac{2φ}{3}$=0(φ∈[-π,0]),∴φ=-$\frac{3π}{4}$,
∴f(x)=sin$\frac{x}{3}$,
∴A.f(-1-6π)+f(1+12π)=sin(-$\frac{1}{3}$-2π)+sin($\frac{1}{3}$+4π)=0,正确;
B,由-$\frac{π}{2}$+2kπ≤$\frac{x}{3}$≤$\frac{π}{2}$+2kπ,可得-$\frac{3π}{2}$+6kπ≤x≤$\frac{3π}{2}$+6kπ,函数单调递减,k=2,$\frac{21π}{2}≤x≤\frac{27π}{2}$,故B正确;
C,x=3π,f(x)=0,正确;
D,g(x)=f(6x)-$\frac{1}{2}$=sin2x-$\frac{1}{2}$在[0,9]上有6个零点,不正确.
故选D.

点评 本题考查三角函数的化简,考查三角函数的图象与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知f(sinx)=cos4x,则$f(\frac{1}{2})$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中正确是①④.(填序号即可)
①|BM|是定值;
②总有CA1⊥平面A1DE成立;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,DP⊥x轴,点M在DP的延长线上,且$\frac{{|{DM}|}}{{|{DP}|}}=\frac{3}{2}$,当点P在圆x2+y2=4上运动时,点M形成的轨迹为L.
(1)求轨迹L的方程;
(2)已知定点E(-2,0),若直线y=kx+2(k≠0)与点M的轨迹L交于A,B两点,问:是否存在实数k,使以AB为直径的圆过点E?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a=log36,b=log612,c=log816,则(  )
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式|x-1|-|x-2|>$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\sqrt{x+1}$+lg(3-x)的定义域为A,g(x)=x2+1的值域为B,设全集U=R.
(1)求A,B;
(2)求A∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$与$\overrightarrow b$所成的角为$\frac{5}{6}π$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,求$|3\overrightarrow a+2\overrightarrow b|$,并求$3\overrightarrow a+2\overrightarrow b$与$\overrightarrow a$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某射手射击一次,命中环数与概率如表:
命中环数  10环  9环  8环  7环7环以下
  概率0.160.320.240.200.08
计算:
(1)射击一次,命中环数不低于7环的概率.
(2)射击一次,至少命中8环的概率.

查看答案和解析>>

同步练习册答案