精英家教网 > 高中数学 > 题目详情

【题目】已知Sn是正项数列{an}的前n项和,且满足a146Snan2+3an+λnN*λR),设bn=(nμan,若b2是数列{bn}中唯一的最小项,则实数μ的取值范围是_____.

【答案】

【解析】

先根据数列满足,,求出其通项公式,进而求出的通项公式,再结合是数列中唯一的最小项,即可求出实数的取值范围.

Sn是正项数列{an}的前n项和,且满足a1=4,6Sn=an2+3an+λ(nN*,λR),

6×4=42+3×4+λλ=4,

6Sn=an2+3an4,

6Sn1=an12+3an14,

①﹣②6an=an2+3an4(an12+3an14)(an+an1)(anan13)=0,

an>0anan13=0数列{an}是首项为4,公差为3的等差数列,

an=4+3(n1)=3n+1,

bn=(nμ)an=(nμ)(3n+1)=3n2+(13μ)nμ;

b2是数列{bn}中唯一的最小项,

∴其对称轴(,).

故答案为:(,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点作斜率为的直线交抛物线于两点.

1)若,求的面积;

2)过点分别作抛物线的两条切线,且直线与直线相交于点,问:点是否在某条定直线上?若在,求该定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.

(1)求椭圆C的标准方程;

(2)若直线与椭圆C交于PQ均在第一象限,直线OPOQ的斜率分别为,且(其中O为坐标原点).证明:直线l的斜率k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,ABACA1CBC1AB1BC1DE分别是AB1BC的中点.

求证:(1)DE∥平面ACC1A1

(2)AE⊥平面BCC1B1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数gx)=﹣4sin2+2图象上点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位长度,得到函数fx)的图象,则下列说法正确的是(

A.函数fx)在区间[]上单调递减

B.函数fx)的最小正周期为2π

C.函数fx)在区间[]的最小值为

D.x是函数fx)的一条对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,已知椭圆上存在点,使,且这样的点有且只有两个.

1)求椭圆的离心率;

2)过点的直线与椭圆相交于两点,且是坐标原点,求的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F是抛物线Cy22pxp0)的焦点,若点Px04)在抛物线C上,且.

1)求抛物线C的方程;

2)动直线lxmy+1mR)与抛物线C相交于AB两点,问:在x轴上是否存在定点Dt0)(其中t≠0),使得kAD+kBD0,(kADkBD分别为直线ADBD的斜率)若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

1)分别写出曲线和曲线的极坐标方程;

2P为曲线上的任意一点,过P向曲线引两条切线PAPB,当最大时,求P点的极坐标.

查看答案和解析>>

同步练习册答案