如图,长方体中,,点E是AB的中点.
(1)求三棱锥的体积;
(2)证明: ;
(3)求二面角的正切值.
(1)1;(2)详见解析;(3)
解析试题分析:(1)求四面体的体积,当高不好确定时候,可考虑等体积转化,该题中,高,可求体积;(2)证明直线和直线垂直,可先证明直线和平面垂直,由,从而面,所以,(3) 求二面角的平面角,可以利用几何法,先找到二面角的平面角,然后借助平面图形去计算,∵,所以,进而可证,就是的平面角,二面角也可以利用空间向量法,建立适当的空间直角坐标系,把相关点的坐标表示出来,计算两个半平面的法向量,进而求法向量的夹角,然后得二面角的余弦值.
试题解析:(1)解:在三棱锥D1-DCE中,D1D⊥平面DCE,D1D=1
在△DCE中,,
CD=2,CD2=CE2+DE2 ∴CE⊥DE.
∴
∴三棱锥D1-DCE的体积. = 4分
(2)证明:连结AD1,由题可知:四边形ADD1A1是正方形
∴A1D⊥AD1 又∵AE⊥平面ADD1A1,A1D平面ADD1A1
∴AB⊥AD1 又∵AB平面AD1E,AD1平面A D1E ABAD1=A
∴A1D⊥平面AD1E 又∵D1E平面AD1E
∴A1D⊥D1E 8分
(3)根据题意可得:D1D⊥平面ABCD
又因为CE平面ABCD,所以D1D⊥CE。
又由(1)中知,DE⊥CE,D1D平面D1DE,DE平面D1DE,D1DDE=D,
∴CE⊥平面D1DE,又∵D1E平面D1DE ∴CE⊥D1E.
∴∠D1ED即为二面角D1―EC―D的一个平面角.
在Rt△D1DE中,∠D1DE=90°,D1D="1," DE=
∴
∴二面角D1―ED―D的正切值是 12分
考点:1、几何体的体积;2、直线和直线垂直的判定;3、二面角的求法.
科目:高中数学 来源: 题型:解答题
如图,斜三棱柱中,侧面底面ABC,底面ABC是边长为2的等边三角形,侧面是菱形,,E、F分别是、AB的中点.
求证:(1);
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求点到平面EA1C1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知一个四棱锥的三视图如图所示,其中,且,分别为、、的中点
(1)求证:PB//平面EFG
(2)求直线PA与平面EFG所成角的大小
(3)在直线CD上是否存在一点Q,使二面角的大小为?若存在,求出CQ的长;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com