精英家教网 > 高中数学 > 题目详情
20.函数y=$\frac{x+2}{x-1}$(x≠1)在区间[2,5)上的最大值、最小值分别是(  )
A.$\frac{7}{4}$,4B.无最大值,最小值7
C.4,0D.最大值4,无最小值

分析 函数y=$\frac{x+2}{x-1}$=1+$\frac{3}{x-1}$在[2,5)上递减,计算即可得到所求最值.

解答 解:函数y=$\frac{x+2}{x-1}$=1+$\frac{3}{x-1}$在[2,5)上递减,
即有x=2处取得最大值4,
由x=5取不到,则最小值取不到.
故选:D.

点评 本题考查函数的最值的求法,考查单调性的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2+|x-2|,}&{x≥0}\\{{x}^{2}}&{x<0}\end{array}\right.$,当函数g(x)=k-f(x)有三个零点时,实数k的取值范围是(  )
A.<k<2B.k≥2C.2<k≤4D.2≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数y=x${\;}^{\frac{1}{5}}$,y=x${\;}^{\frac{1}{4}}$,y=x${\;}^{-\frac{2}{3}}$,y=x${\;}^{-\frac{1}{2}}$中,定义域为{x∈R|x>0}的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=logm(x2+4x+4a+1)(m>0,且m≠1)对于任意x∈[0,+∞)都有意义.
(1)求实数a的取值范围;
(2)在函数上是否存在不同的两点,使过这两点的直线平行于x轴?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A={1,2,x},B={1,x2},且A∩B=B,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x>0,y≥0,x+2y=1,求函数w=log${\;}_{\frac{1}{2}}$(2xy+y2+1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={2,3},B={2,3,4},C={3,4,5}则(A∩B)∪C=(  )
A.{2,3,4}B.{2,3,5}C.{3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(2x+3)的定义域为(0,1),求y=f(2x-1)的定义域为(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C参数方程为$\left\{\begin{array}{l}{x=4+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),判断直线l与圆C的位置关系,并求圆C上的点到直线l的最大距离.

查看答案和解析>>

同步练习册答案