分析 (Ⅰ)通过设等差数列{an}的公差为d,联立a1+2d=2与5a1+15d=0,计算即得结论;
(Ⅱ)通过(I)、配方可知Sn=-$(n-\frac{7}{2})^{2}$+$\frac{49}{4}$,通过S3=S4=12即得结论.
解答 解:(Ⅰ)设等差数列{an}的公差为d,
依题意,a1+2d=2,5a1+15d=0,
解得:a1=6,d=-2,
∴数列{an}的通项公式an=-2n+8;
(Ⅱ)由(I)可知Sn=6n+$\frac{n(n-1)}{2}$•(-2)
=-n2+7n,
=-$(n-\frac{7}{2})^{2}$+$\frac{49}{4}$,
∵S3=-9+21=12,S4=-16+28=12,
∴当n=3或4时,Sn最大.
点评 本题考查等差数列的通项及前n项和,注意解题方法的积累,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{2}{7}$ | B. | $\frac{2}{7}$ | C. | $-\frac{3}{7}$ | D. | $\frac{3}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 18 | |
女 | 5 | 12 | |
总计 | 30 |
P(x2≥x0) | 0.40 | 0.25 | 0.10 | 0.010 |
x0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com