精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和为Sn,且2,an,Sn成等差数列.
(1)证明:数列{an}是等比数列;
(2)若bn=an+log2$\frac{1}{a_n}$,Tn是数列{bn}的前n项和,求Tn

分析 (1)由2,an,Sn成等差数列.可得2an=Sn+2.利用递推关系可得:an=2an-1.即可得出.
(2)由(1)可得:an=2n.可得bn=an+log2$\frac{1}{a_n}$=2n-n,再利用等比数列与等差数列的求和公式即可得出.

解答 (1)证明:∵2,an,Sn成等差数列.∴2an=Sn+2.
n=1时,2a1=a1+2,解得a1=2.
n≥2时,2an-1=Sn-1+2.
可得2an-2an-1=an,即an=2an-1
∴数列{an}是等比数列,公比为2,首项为2.
(2)解:由(1)可得:an=2n
∴bn=an+log2$\frac{1}{a_n}$=2n-n,
∴数列{bn}的前n项和Tn=(2+22+…+2n)-(1+2+…+n)
=$\frac{2({2}^{n}-1)}{2-1}$-$\frac{n(n+1)}{2}$
=2n+1-2-$\frac{n(n+1)}{2}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|-4<x<1},B={x|2x≥1}.
(Ⅰ)求A∩B,A∪B;
(II)设函数$f(x)=\sqrt{4-2x}+{log_2}(2x-1)$的定义域为C,求(∁RA)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线l经过点(a-2,-1)和(-a-2,1),且与直线2x+3y+1=0垂直,则实数a的值为(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x>1,则不等式x+$\frac{1}{x-1}$的最小值为(  )
A.4B.2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,a,b,c分别是A,B,C的对边,a=2bsinA.
(1)求B的大小;
(2)若a=$\sqrt{2}$,b=1,求A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a=log36,b=log612,c=log816,则(  )
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.菱形ABCD中,E,F分别是AD,CD中点,若∠BAD=60°,AB=2,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知{an}是等差数列,{bn}是正项的等比数列,且a1=b1=2,a5=14,b3=a3
(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列{an}中满足b4<an<b6的各项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列关于流程图的逻辑结构正确的是(  )
A.选择结构中不含有顺序结构
B.选择结构、循环结构和顺序结构在流程图中一定是并存的
C.循环结构中一定包含选择结构
D.选择结构中一定有循环结构

查看答案和解析>>

同步练习册答案